Básico
Baldor debería saberlo...
El producto N de tres números enteros positivos es 6 veces la suma de tales números, y uno de los enteros es la suma de los otros dos. Calcular la suma de todos los valores posibles de N.
Una propiedad de dos primos
Si $ p $ y $ q $ son primos, entonces $p^{q-1}+q^{p-1}-1$ es múltiplo de $pq$
Primos y menores
Sea $ p $ un primo y $ r $ un entero positivo. ¿Cuántos enteros positivos menores que $p^r$ son primos con $p^r$?
Autoinversos respecto a un módulo
Sea $p$ un primo, $a$ un elemento de $\{1,2,3,...,p-1\}$ y $a$ tal que $a^2\equiv 1 \pmod {p}$. Encontrar los posibles valores de $a$.
El PTF lo resuelve --si le piensas un poquito...
Encontrar todos los primos $q$ tales que $4+2^q$ es múltiplo de $2q.$
Factorizar y resolver
Encontrar todas las soluciones $(x,y)$ en enteros positivos de la ecuación diofantina $x^3=19+y^3$
Pudorosa (segunda parte)
Decidir --con prueba-- si la ecuación diofantina $123x+426y=8$ tiene solución.
Una pudorosa propiedad del máximo común divisor
Si $a, b$ son enteros y cumplen $7a-38b=-2$ ¿qué se puede concluir sobre el máximo común divisor de a y b?
Cuadrilátero en un cubo
En un cubo de arista 6 los puntos medios B,D de dos aristas opuestas, y dos vértices opuestos A,C pero no en las aristas de los puntos medios B,D, forman un cuadrilátero ABCD. Encontrar el área de ese cuadrilátero.
¿Es múltiplo de 11? (Que lo diga Fermat.)
Decidir --con prueba-- si $61^{61}+71^{71}$ es divisible entre 11.