Básico

Problemas de nivel pre-estatal.
Problema

Baldor debería saberlo...

Enviado por jmd el 13 de Septiembre de 2009 - 08:44.

El producto N de tres números enteros positivos es 6 veces la suma de tales números, y uno de los enteros es la suma de los otros dos. Calcular la suma de todos los valores posibles de N.

Problema

Una propiedad de dos primos

Enviado por jmd el 11 de Septiembre de 2009 - 04:34.

Si $ p $ y $ q $ son primos, entonces $p^{q-1}+q^{p-1}-1$ es múltiplo de $pq$

Problema

Primos y menores

Enviado por jmd el 11 de Septiembre de 2009 - 04:28.

Sea $ p $ un primo y $ r $ un entero positivo. ¿Cuántos enteros positivos menores que $p^r$ son primos con $p^r$?

Problema

Autoinversos respecto a un módulo

Enviado por jmd el 10 de Septiembre de 2009 - 07:39.

Sea $p$ un primo, $a$ un elemento de $\{1,2,3,...,p-1\}$ y $a$ tal que $a^2\equiv 1 \pmod {p}$. Encontrar los posibles valores de $a$.

Problema

El PTF lo resuelve --si le piensas un poquito...

Enviado por jmd el 8 de Septiembre de 2009 - 12:50.

Encontrar todos los primos $q$ tales que $4+2^q$ es múltiplo de $2q.$

Problema

Factorizar y resolver

Enviado por jmd el 30 de Agosto de 2009 - 20:55.

Encontrar todas las soluciones $(x,y)$ en enteros positivos de la ecuación diofantina $x^3=19+y^3$
 

Problema

Pudorosa (segunda parte)

Enviado por jmd el 28 de Agosto de 2009 - 18:54.

Decidir --con prueba-- si la ecuación diofantina $123x+426y=8$ tiene solución.
 

Problema

Una pudorosa propiedad del máximo común divisor

Enviado por jmd el 28 de Agosto de 2009 - 18:41.

Si $a, b$ son enteros y cumplen $7a-38b=-2$ ¿qué se puede concluir sobre el máximo común divisor de a y b?

Problema

Cuadrilátero en un cubo

Enviado por jmd el 28 de Agosto de 2009 - 07:45.

En un cubo de arista 6 los puntos medios B,D de dos aristas opuestas, y dos vértices opuestos A,C pero no en las aristas de los puntos medios B,D,  forman un cuadrilátero ABCD. Encontrar el área de ese cuadrilátero.

Problema

¿Es múltiplo de 11? (Que lo diga Fermat.)

Enviado por jmd el 28 de Agosto de 2009 - 07:25.

Decidir --con prueba-- si $61^{61}+71^{71}$ es divisible entre 11.

Distribuir contenido