Intermedio

Problemas de nivel estatal y similares.
Problema

Tesoro de Hernán Cortés --en 2012 cofres

Enviado por jmd el 5 de Mayo de 2012 - 18:24.

En la Bahía de la Paz, Hernán Cortés guardó su tesoro en 2012 cofres con sus respectivos candados. Cada candado y su cofre están numerados del 1 al 2012. Cortés metió al azar una llave en cada cofre y cerró los candados para que nadie tomara el tesoro.  Mucho tiempo después, se halló el tesoro de Cortés. Los arqueólogos van a forzar los candados marcados con los números 1 y 2 para obtener así dos de las llaves con la esperanza de que con ellas sea posible abrir sucesivamente todos los demás cofres. ¿De cuántas maneras pudieron quedar distribuidas inicialmente las llaves dentro de los cofres de manera que la estrategia de los arqueólogos sea exitosa?

Problema

Encontrar ángulo dada una bisectriz

Enviado por jmd el 5 de Mayo de 2012 - 18:21.

En un rectángulo $ABCD$, $F$ es el punto medio del lado $CD$ y $E$ es un punto del lado $BC$ tal que $AF$ es bisectriz del ángulo $EAD$. Si el ángulo $AEF$ mide 68 grados ¿cuál es la medida del ángulo $BAE$?

Problema

Múltiplo de cada uno de sus dígitos

Enviado por jmd el 5 de Mayo de 2012 - 18:17.

Encuentra el mayor número $N$ que cumpla, al mismo tiempo, las siguientes condiciones:

  • a) Todos los dígitos de $N$ son distintos,
  • b) $N$ es múltiplo de cada uno de sus dígitos.
Problema

Los problemas del nacional de la 12 ONMAS

Enviado por cuauhtemoc el 5 de Mayo de 2012 - 11:15.

Problema

Cuadrados

Enviado por Alexdidir el 1 de Mayo de 2012 - 17:21.

Hallar el mínimo k>2 para el cual existen k numeros enteros consecutivos tales que la suma de sus cuadrados es un cuadrado

Problema

Imposibilidad de nueve rectángulos

Enviado por jmd el 1 de Mayo de 2012 - 16:25.

 

Una cuadrícula de $6\times6$ se va a recortar en rectángulos siguiendo las líneas de la cuadrícula. Muestra que no es posible hacer una división de la cuadrícula en 9 rectángulos diferentes.
 

Problema

Área de pentágono

Enviado por jmd el 1 de Mayo de 2012 - 16:24.

 

Por los vértices D y A del cuadrado ABCD de lado 5 se trazan, respectivamente, los segmentos paralelos DE y AF hacia afuera del cuadrado, de tal manera DE mide 4 y es perpendicular a EF. Encuentra el área del pentágono ABCEF.
 

Problema

Ecuación de suma de fracciones

Enviado por jmd el 1 de Mayo de 2012 - 16:22.

 

Si $a$ y $b$ son enteros distintos entre sí y diferentes de cero que cumplen $\frac{a-2010}{b}+\frac{b+2010}{a}=2$ ¿cuál es el valor de $a-b$?
 
Problema

Demostrar perpendicular

Enviado por jmd el 1 de Mayo de 2012 - 06:22.

Sean $ABC$ un triángulo rectángulo y $M$ el punto medio de la hipotenusa $BC$. Sus catetos cumplen que $CA$ es menor que $AB$. Se coloca un punto $D$ sobre $AB$ de manera que $CA = AD$. Finalmente, sea $E$ el punto común de $AM$ y $CD$. Si $F$ es un punto sobre $BC$ tal que $EF$ es paralela a BC $AC$, demostrar que $AM$ es perpendicular a $FD$.

Problema

Tangentes a circunferencia desde el centro de otra

Enviado por jmd el 1 de Mayo de 2012 - 06:19.

 

Considere las circunferencias $a$ y $b$ de centros $A$ y $B$ respectivamente. Desde el centro $A$ se trazan las tangentes a $b$ y éstas cortan a $a$ en los puntos $P$ y $Q$. Desde el centro $B$ se trazan las tangentes a $a$ que cortan a $b$ en $R$ y $S$. Demostrar que $PQRS$ es un rectángulo.
 

Distribuir contenido