Intermedio

Problemas de nivel estatal y similares.
Problema

Múltiplos de un primo escritos con puros unos

Enviado por jmd el 19 de Diciembre de 2011 - 20:33.

 Demostrar que para todo número primo p distinto de 2 y de 5, existen infinitos múltiplos de p de la forma 1111...1 (escrito sólo con unos).

Problema

Desigualdad con inradio y circunradio

Enviado por jmd el 19 de Diciembre de 2011 - 20:32.

Justificar razonadamente que, en cualquier triángulo, el diámetro de la circunferencia inscrita no es mayor que el radio de la circunferencia circunscrita.

Problema

Pichoneras de nacionalidad, edad y sexo

Enviado por jmd el 19 de Diciembre de 2011 - 20:27.

En una reunión hay 201 personas de 5 nacionalidades diferentes. Se sabe que, en cada grupo de 6, al menos dos tienen la misma edad. Demostrar que hay al menos 5 personas del mismo país, de la misma edad y del mismo sexo.

Problema

Para entender la pregunta primero tienes que responderla

Enviado por jmd el 10 de Diciembre de 2011 - 14:27.

Determine los posibles valores de la suma de los digitos de todos los cuadrados perfectos.

Problema

Ejercicio trigonométrico

Enviado por jmd el 10 de Diciembre de 2011 - 09:40.

Sea ABC un triángulo equilátero y Γ su círculo inscrito. Si D y E son puntos de los lados AB y AC, respectivamente, tales que DE es tangente a Γ, demuestre que ADDB+AEEC=1

Problema

¿Cómo se encierra un n-polígono en un paralelogramo?

Enviado por jmd el 10 de Diciembre de 2011 - 09:30.

 Muestre que, para cualquier polígono convexo de área uno, existe un paralelogramo de área 2 que lo contiene.

Problema

Primos que son diferencia de capicúas consecutivos

Enviado por jmd el 10 de Diciembre de 2011 - 09:28.

Un número natural es capicúa si al escribirlo en notación decimal se puede leer de igual forma de izquierda a derecha y de derecha a izquierda. Ejemplos: 8, 23432, 6446. Sean x1<x2<<xi<xi+1<... todos los números capicúas. Para cada i sea yi=xi+1xi. ¿Cuántos números primos distintos tiene el conjunto {y1,y2,y3}?

Problema

¿Sabes geometría analítica? (alternativa: Stewart)

Enviado por jmd el 10 de Diciembre de 2011 - 07:22.

 En un triángulo equilátero ABC, cuyo lado tiene longitud 2, se inscribe la circunferencia Γ.

  • a) Demostrar que para todo punto P de Γ, la suma de los cuadrados de sus distancias a los vértices A,B y C es 5.
  • b) Demostrar que para todo punto P de Γ, es posible construir un triángulo cuyos lados tienen las longitudes de los segmentos AP,BP y CP, y cuya área es 3/4
Problema

Criterio de potencia para cíclico

Enviado por jmd el 9 de Diciembre de 2011 - 17:57.

En un triángulo ABC, sean I el centro de la circunferencia inscrita y D,E y F sus puntos de tangencia con los lados BC,AC y AB, respectivamente. Sea P el otro punto de intersección de la recta AD con la circunferencia inscrita. Si M es el punto medio de EF, demostrar que los cuatro puntos P,I,M y D pertenecen a una misma circunferencia.

Problema

Lados y alturas en progresión aritmética, equilátero

Enviado por jmd el 8 de Diciembre de 2011 - 20:48.

Las medidas de los lados de un triángulo están en progresión aritmética, y las longitudes de las alturas del mismo triángulo también están en progresión aritmética. Demuestre que el triángulo es equilátero.

Distribuir contenido