Álgebra

Problema

Problema 2

Enviado por Roberto Alain R... el 7 de Junio de 2015 - 15:44.

Si $a^2 + a$ = $2b^{2} + b = 210$ y $a + b = 24$ ¿cuánto vale $50a - 49b$ ?

Problema

Problema 1

Enviado por Roberto Alain R... el 7 de Junio de 2015 - 15:22.

Xavier tiene el mismo número de hermanas que de hermanos. Su hermana Yara tiene el doble de hermanos que de hermanas. ¿Cuántos hermanos y cuántas hermanas hay en esta familia?

Problema

Suma de cualesquiera dos consecutivos, cuadrado

Enviado por German Puga el 18 de Abril de 2015 - 20:05.

Determina si existe una sucesión infinita $a_1,a_2,\dots$ de enteros positivos que satisface la igualdad $$a_{n+2} = a_{n+1} + \sqrt{a_{n+1} + a_n}$$ para todo entero positivo n.

Problema

XXVIII OMM Problema 5

Enviado por vmp el 11 de Noviembre de 2014 - 10:46.

Sean $a$, $b$ y $c$ números reales positivos tales que $a+b+c=3$. Muestra que $$\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}} \geq \frac{3}{2}$$.

Problema

Modelación de problemas. Cálculo diferencial e integral I.

Enviado por Annie White el 20 de Septiembre de 2014 - 19:55.

1. Se desea cercar un terreno de 2000m2, expresa una ecuación que defina la cantidad de cerco en función de su lado de mayor longitud. Nota: Es un terreno rectangular.

2. Expresa el área de una caja con base cuadrangular si tiene un volumen de 16m2 expresala en función de la longitud de su altura.

3.Se desea construir un cilindro de 40 cm3, expresa el área del cilindro en función de su radio.

Problema

P1. IMO 2014 - Sucesión Inifinita

Enviado por jesus el 9 de Julio de 2014 - 10:08.

Sea $a_0<a_1< a_2 < \cdots $ una sucesión infinita de números enteros positivos. Demostrar que existe un único entero $n \geq 1$ tal que $$a_n < \frac{a_0+a_1 + \cdots + a_n}{n} \leq a_{n+1}$$

Problema

1,5,13,25...

Enviado por Paola Ramírez el 13 de Junio de 2014 - 03:40.

Con cuadrados de lado 1 se forma en cada etapa una figura en forma de escalera siguiendo el patron del dibujo 

Por ejemplo, la primera etapa utiliza un cuadrado, la segunda utiliza 5. Determine la última etapa para la cual la figura correspondiente utiliza menos de 2014 cuadrados.

Problema

Todo es cuestión de álgebra

Enviado por Paola Ramírez el 13 de Junio de 2014 - 03:25.

Sean $a,b,c$ y $d$ números todos distintos entre sí, tales que
$\frac{a}{b} +\frac{b}{c}+\frac{c}{d}+\frac{d}{a}=4$ y $ac=bd$

Determine el máximo valor de posible de
$\frac{a}{c} +\frac{b}{d}+\frac{c}{a}+\frac{d}{b}$

Problema

Inferencias con diofantina y clases residuales

Enviado por jmd el 1 de Junio de 2014 - 07:05.
4..A/N. Encontrar todas las parejas m,n de enteros no negativos que satisfacen
$3 \times 2^m + 1 = n^2$
Problema

Coeficientes y raíces en tres cuadráticas

Enviado por jmd el 25 de Mayo de 2014 - 10:18.

2.6. Considere las ecuaciones cuadráticas
\begin{eqnarray}
x^2-b_1x+c_1&=&0\\
x^2-b_2x+c_2&=&0\\
x^2-b_3x+c_3&=&0
\end{eqnarray}
con $b_1.b_2,b_3,c_1,c_2,c_3$ números reales diferentes.
¿Es posible que los números $b_1,b_2,b_3,c_1,c_2,c_3$ sean las raíces de las ecuaciones cuadráticas en algún orden?

Distribuir contenido