Publicaciones Recientes
P5. Calcula el área del cudrilátero DHEO
Se tiene el triángulo acutángulo ABC. El segmento BC mide 40 unidades. Sea H el ortocentro del triángulo ABC y O su circuncentro. Sean D el pie de la altura desde A y E el pie de la altura desde B. Además el punto D parte al segmento BC de manera que BDDC=35. Si la mediatriz del segmento AC pasa por el punto D, calcula el área del cuadrilátero DHEO.
Nota: El ortocentro es el punto donde se intersectan las tres alturas de un triángulo. El circuncentro es el centro del círculo que pasa por los tres vértices del triángulo.
P4. Ana y Beto coloreando cuadrados
Hay 6 cuadrados en una fila. Cada uno se etiqueta con el nombre de Ana o Beto y con un número del 1 al 6, usando cada cada número sin repetir. Ana y Beto juegan a pintar cada cuadrado siguiendo el orden de los números en las etiquetas. Quien pinte el cuadrado será la persona cuyo nombre esté en la etiqueta. Al pintarlo, la persona podrá elegir si pintar el cuadrado de rojo o azul. Beto gana si al final hay la misma cantidad de cuadrados azules como rojos, y Ana gana en caso contrario. ¿En cuántas de todas las posibles maneras de etiquetar los cuadrados puede Beto asegurar su cictoria?
El siguiente es un ejemplo de una asignación de etiquetas.

P3. Triángulo, Altura y punto en Mediatriz.
Sea ABC un triángulo y D el pie de la altura desde A. Sea M un punto tal que MB=MC. Sean E y F las intersecciones del circuncírculo de BMD y CMD con AD. Sean G y H las intersecciones de MB y MC con AD. Demuestra que EG=FH
P2. Papelitos con números y fracciones con raíces cuadradas racionales.
Se tienen 50 papelitos con los números del 1 al 50. Se quieren tomar 3 papelitos de tal manera que a cualquiera de los 3 números, dividido entre el máximo común divisor de los otros dos, se le puede sacar la raíz cuadrada de tal manera que quede un número racional.
¿Cuántas tercias (no ordenadas) de papelitos cumplen esta condición?
Nota: Un número es racional si se puede escribir como la división de 2 enteros.
P1. Ecuación cuadrática con sumatoria
Resultados XXXVII OMM
Hola, les escribo desde mi casa XD, el día de hoy llegamos a Tamaulipas desde Durango, llegamos a las 7:00 am. La verdad, desde mi punto de vista como participante, el nacional estuvo muy triste, pude haber hecho más. Desde mi punto de vista como persona, es que esta olimpiada estuvo bastante bien como las demás, en los últimos 5 años Tamaulipas no ha caído en el rankin como solía hacerlo en años pasados, manteniendose siempre entre los mejores 16 del país, y en 2 ocasiones entrando en los mejores 8.
Esta año, Tamaulipas quedó en 11° lugar, con los siguientes resultados:
P6 Primer problema real de funcionales
Sea N el conjunto de los enteros positivos {1, 2, ...}. Determina todas las funciones f:N→N tales que cualesquiera m,n∈N se cumple al mismo tiempo que:
f(m+n) | f(m)+f(n) f(m)f(n) | f(mn)
Nota: a|b quiere decir que el número entero a divide al número entero b.
P5 Concurrencia de 2 círculos y 1 segmento
Sean ABC un triángulo acutángulo, Γ su circuncírculo y O su circuncentro. Sea F el punto en AC tal que ∠COF=∠ACB, donde F y B están de lados opuestos respecto a CO. La recta FO corta a BC en G. La paralela a BC por A interseca a Γ de nuevo en M. Las rectas MG y CO se cortan en K. Demuestra que los circuncírculos de los triángulos BGK y AOK concurren en AB.
P4 Un mago y sus fichas B/N
Dada una colección de varias fichas que pueden ser negras o blancas y que tienen, cada una, un número escrito en ellas, un mago hace el siguiente movimiento: Toca 2 de las fichas con distinto número y color, y la de número menor se convierte en una ficha idéntica a la otra.
Sea n un entero mayor o igual a 2. Para cada uno de los movimientos del 1 al n, el mago pone en la mesa una ficha negra o blanca con ese número. Luego hace su movimiento para ir modificando la colección.
P3 Regresa la Geo a la OMM
Sea ABCD un cuadrilátero convexo. Si M,N,K son los puntos medios de los segmentos AB, BC y CD respectivamente, y además existe un punto P dentro del cuadrilátero ABCD tal que, ∠BPN=∠PAD y ∠CPN=∠PDA. Demuestra que AB⋅CD = 4PM⋅PK
