Publicaciones Recientes
Coloreo de triángulos con fichas
Tres fichas $A, B, C$ están situadas una en cada vértice de un triángulo equilátero de lado $n$. Se ha dividido el triángulo en triangulitos equiláteros de lado 1, tal como muestra la figura en el caso $n = 3$.
Inicialmente todas las líneas de la figura están pintadas de azul. Las fichas se desplazan por las líneas, pintando de rojo su trayectoria, de acuerdo con las dos reglas siguientes:
Suma de fracciones 1/ab
Dado un número natural $n\geq 2$ considere todas las fracciones de la forma $1/ab$, donde $a$ y $b$ son números naturales, primos entre sí y tales que $$a < b \leq n$$ $$a + b \gt n$$ Demuestre que para cada $n$, la suma de estas fracciones es 1/2.
Método para distribuir ceros y unos en un tablero
Tenemos un tablero cuadriculado de $k^2 - k + 1$ filas y $k^2 - k + 1$ columnas, donde $k = p + 1$ y $p$ es un número primo. Para cada primo $p$, dé un método para distribuir números entre 0 y 1, un número en cada casilla del tablero, de modo que en cada fila haya exactamente $k$ números $0$ en cada columna haya exactamente $k$ números $0$ y además no haya ningún rectángulo de lados paralelos a los lados del tablero con números 0 en sus cuatro vértices.
Punto medio de la mediana
Sea $M$ el punto medio de la mediana $AD$ del triángulo $ABC$ ($D$ pertenece al lado $BC$). La recta $BM$ corta al lado $AC$ en el punto $N$. Demuestre que $AB$ es tangente a la circunferencia circunscrita al triángulo $NBC$ si, y sólo si, se verifica la igualdad $$\frac{BM}{MN}=\left(\frac{BC}{BN}\right)^2$$
Cubo formado por 1996 cubos
Sea $n$ un número natural. Un cubo de arista $n$ puede ser dividido en $1996$ cubos cuyas aristas son también números naturales. Determine el menor valor posible de $n$.
Grado de repulsión de una función circular
Una función $f: N \mapsto N$ es circular si para cada $p$ en $N$ existe $n$ en $N$ con $n\leq p$ tal que:
$$\underbrace{f^n(p) = f(f(\ldots f(p) \ldots )))}_{n veces}=p$$
La función $f$ tiene grado de repulsión $k$, $0 < k < 1$, si para cada $p$ en $N$, $f^i(p) \neq p$ para $i\leq [k\cdot p]$. Determine el mayor grado de repulsión que puede tener una función circular. Nota: $[x]$ indica el mayor entero menor o igual que $x$.
... y se forma un trapecio isósceles...
La circunferencia inscrita en el triángulo $ABC$ es tangente a $BC, CA$ y $AB$ en $D, E$ y $F$, respectivamente. Suponga que dicha circunferencia corta de nuevo a $AD$ en su punto medio $X$, es decir, $AX = XD$. Las rectas $XB$ y $XC$ cortan de nuevo a la circunferencia inscrita en $Y$ y en $Z$, respectivamente. Demuestre que $EY = FZ$.
Dominio eficiente de un tablero
En un tablero de $m\times m$ casillas se colocan fichas. Cada ficha colocada en el tablero "domina" todas las casillas de la fila (--), la columna (|) y la diagonal (\), a la que pertenece. Determine el menor número de fichas que deben colocarse para que queden "dominadas" todas las casillas del tablero. Nota: la ficha no "domina" la diagonal (/).
Perpendicular común a dos rectas en el espacio
Sean $r$ y $s$ dos rectas ortogonales y que no están en el mismo plano. Sea $AB$ su perpendicular común, donde $A$ pertenece a $r$ y $B$ a $s$. Se considera la esfera de diámetro $AB$. Los puntos $M$, de la recta $r$ y $N$, de la recta $s$, son variables, con la condición de que $MN$ sea tangente a la esfera en un punto $T$. Determine el lugar geométrico de $T$. Nota: el plano que contiene a $B$ y $r$ es perpendicular a $s$.
Condiciones extravagantes para n+1 números
Sea $n$ un número entero mayor que 1. Determine los números reales $x_1, x_2,\ldots, x_n\leq 1$ y $x_{n+1}>0$, que verifiquen las dos condiciones siguientes:
$$\sqrt{x_1}+\sqrt[3]{x_2}+\ldots+\sqrt[n-1]{x_n}=n\sqrt[2]{x_{n+1}}$$
$$\frac{x_1+x_2+ \ldots +x_n}{n}=x_{n+1}$$