Publicaciones Recientes

Entrada de blog

Sobre la utilidad de saber trigonometría

Enviado por jmd el 17 de Julio de 2011 - 19:34.

En este post insisto sobre la idea de que la trigonometría libera al cognizador de la obligación de ser creativo --en situaciones en que ningún trazo auxiliar está a la vista (y menos un procedimiento sintético usando teoremas conocidos).

Problema

Caracterización del ortocentro

Enviado por jmd el 5 de Julio de 2011 - 18:16.

Demostrar que un punto $P$ en el interior de un triángulo acutángulo $XYZ$ es el ortocentro de éste si y sólo si 

  • $XP$ es perpendicular a $YZ$, y 
  • el reflejo de $P$ en el lado $YZ$ pertenece al circuncírculo de $XYZ$.
Entrada de blog

Método de áreas (2a parte)

Enviado por jmd el 3 de Julio de 2011 - 21:20.

En este post voy a discutir el método de áreas en el problem solving de matemáticas de concurso. El tema ya lo había discutido (un poco de manera reticente) en el post Método de áreas. En esta ocasión voy a profundizar un poco más en ese método, presentando y demostrando un teorema --y algunas de sus instancias de uso.

Problema

Suma de razones de segmentos

Enviado por jmd el 30 de Junio de 2011 - 18:41.

Sea $P$ un punto interior del triángulo $ABC$. Los rayos $AP,BP,CP$ cortan los lados $BC,CA,AB$ en los puntos $D,E,F$, respectivamente. Demostrar que 

$$\frac{PD}{AD}+\frac{PE}{BE}+\frac{PF}{CF}=1$$
Problema

Método de áreas (revisitado)

Enviado por jmd el 30 de Junio de 2011 - 18:34.

Sean dados dos segmentos $AB$ y $PQ$, y suponga que los segmentos o sus prolongaciones se cortan en el punto $M$. Demostrar que la razón de las áreas de los triángulos $ABP$ y $ABQ$ es igual a la razón de las distancias de $P$ a $M$ y de $Q$ a $M$.

Problema

Ejercicio clásico (con descubrimiento semiguiado)

Enviado por jmd el 30 de Junio de 2011 - 18:25.

 Sea $D$ un punto en la base $BC$ de un triángulo, y consideremos los triángulos $ABD$ y $ACD$. 

  •  Demostrar que la razón de sus áreas es igual a la razón de sus bases $BD$ y $CD$.
  •  Demostrar que si $D$ es el punto medio de $BC$ entonces sus áreas son iguales.
  •  Demostrar que si $D$ es el punto en que la bisectriz del ángulo $A$ corta a la base $BC$, entonces $AB/AC=BD/CD$ (teorema de la bisectriz).
 
Problema

Reflexión de pies de alturas (P6)

Enviado por jesus el 29 de Junio de 2011 - 17:03.

Sea $ABC$ un triángulo acutángulo y sean $D$, $E$ y $F$ los pies de las alturas desde $A$, $B$ y $C$, respectivamente. Sean $Y$ y $Z$ los pies de las perpendiculares desde $B$ y $C$ sobre $FD$ y $DE$, respectivamente. Sea $F_1$ la reflexión de $F$ con respecto a $E$ y $E_1$ reflexión de $E$ respecto a $F$. Si $3EF = FD+DE$ demuestra que $\angle BZF_1 = \angle CYE_1$.

Nota. La reflexión de un punto $P$ respecto a un punto $Q$ es el punto $P_1$ ubicado sobre la recta $PQ$ tal que $Q$ queda entre $P$ y $P_1$, y $PQ = QP_1$

Problema

Sistema de ecuaciones en tres variable (P5)

Enviado por jesus el 29 de Junio de 2011 - 16:49.

Los números reales positivos $x$, $y$, $z$ son tales que:

$$x+ \frac{y}{z} = y + \frac{z}{x} = z + \frac{x}{y} = 2$$

Determina todos los valores posibles de $x+y+z$.

Problema

Diofantina con tres primos (P4)

Enviado por jesus el 29 de Junio de 2011 - 16:45.

Encuentra todos los enteros positivos $p$, $q$ y $r$, con $p$ y $q$ números primos, que satisfacen la igualdad:

$$\frac{1}{p+1}+\frac{1}{q+1} - \frac{1}{(p+1)(q+1)} = \frac{1}{r}$$

Problema

Desliz tras desliz te lleva a 5 (P3)

Enviado por jesus el 29 de Junio de 2011 - 15:18.

Aplicar un desliz a un entero $n \geq 2$ significa tomar cualquier primo $p$ que divida a $n$ y remplazar $n$ por $\frac{n + p^2}{p}$.

Se comienza con un entero cualquiera mayor o igual que $5$ y se le aplica un desliz. Al número así obtenido se le aplica un desliz, y así sucesivamente se siguen aplicando deslices. Demuestra que sin importar los deslices aplicados, en algún momento se obtiene el número 5.

Distribuir contenido