Publicaciones Recientes
Distancias entre puntos de una cuadrícula
Se dan 16 puntos formando una cuadrícula como en la figura
De ellos se han destacado A y D. Se pide fijar,de todos los modos posibles, otros dos puntos B y C con la condición de que las seis distancias determinadas por los cuatro puntos sean distintas. En ese conjunto de cuaternas, estudiar:
Múltiplos de un primo escritos con puros unos
Demostrar que para todo número primo p distinto de 2 y de 5, existen infinitos múltiplos de p de la forma 1111...1 (escrito sólo con unos).
Desigualdad con inradio y circunradio
Justificar razonadamente que, en cualquier triángulo, el diámetro de la circunferencia inscrita no es mayor que el radio de la circunferencia circunscrita.
Triángulo aritmético
Sea dado el triángulo aritmético
0 1 2 3 4 ............. 1991 1992 1993
1 3 5 7...................... 3983 3985
4 8 12............................. 7968
...
(donde cada número es la suma de los dos que tiene encima, cada fila tiene un número menos y en la última sólo hay un número). Demostrar que el último número es múltiplo de 1993.
Pichoneras de nacionalidad, edad y sexo
En una reunión hay 201 personas de 5 nacionalidades diferentes. Se sabe que, en cada grupo de 6, al menos dos tienen la misma edad. Demostrar que hay al menos 5 personas del mismo país, de la misma edad y del mismo sexo.
Memes educativos
En estos días de diciembre me enteré que en la facultad cerraron la licenciatura en historia --debido a su baja eficiencia terminal. La profesora (de esa licenciatura clausurada) que me lo comunicó es licenciada en comunicación por la universidad --la acotación es pertinente porque la implicatura es que participa de su cultura.
Ella justificaba la decisión de la siguiente manera: "es que en Tamaulipas somos más pragmáticos... y los doctores quieren formarlos (a los egresados) en investigación... y a los alumnos simplemente no les entran los temas teóricos como filosofía de la historia o historia del arte."
Segmentos formados por n puntos
Se tienen n puntos distintos A1,A2,…,An en el plano y a cada punto Ai se ha asignado un número real λ distinto de cero, de manera que ¯AiAj2=λi+λj, para todos los i,j,i≠j
Demuestre que
(a) n≤4
(b) Si n=4, entonces 1λ1+1λ2+1λ3+1λ4=0
Coloreo de triángulos con fichas
Tres fichas A,B,C están situadas una en cada vértice de un triángulo equilátero de lado n. Se ha dividido el triángulo en triangulitos equiláteros de lado 1, tal como muestra la figura en el caso n=3.
Inicialmente todas las líneas de la figura están pintadas de azul. Las fichas se desplazan por las líneas, pintando de rojo su trayectoria, de acuerdo con las dos reglas siguientes:
Suma de fracciones 1/ab
Dado un número natural n≥2 considere todas las fracciones de la forma 1/ab, donde a y b son números naturales, primos entre sí y tales que a<b≤n a+b>n Demuestre que para cada n, la suma de estas fracciones es 1/2.
Método para distribuir ceros y unos en un tablero
Tenemos un tablero cuadriculado de k2−k+1 filas y k2−k+1 columnas, donde k=p+1 y p es un número primo. Para cada primo p, dé un método para distribuir números entre 0 y 1, un número en cada casilla del tablero, de modo que en cada fila haya exactamente k números 0 en cada columna haya exactamente k números 0 y además no haya ningún rectángulo de lados paralelos a los lados del tablero con números 0 en sus cuatro vértices.