Publicaciones Recientes
Olimpiada Mexicana de Matemáticas (Del. Tam. 2009): Recordatorio
El viernes 11 de septiembre inicia el entrenamiento a las 4pm, continua el sábado a las 9am con un examen selectivo y en la tarde con la discusión de los problemas del selectivo (El domingo no hay entrenamiento.)
Autoinversos respecto a un módulo
Sea $p$ un primo, $a$ un elemento de $\{1,2,3,...,p-1\}$ y $a$ tal que $a^2\equiv 1 \pmod {p}$. Encontrar los posibles valores de $a$.
Sin Euler estaríamos perdidos
Encontrar las tres últimas cifras de $2009^{9999}$ (argumento fiador requerido).
El PTF lo resuelve --si le piensas un poquito...
Encontrar todos los primos $q$ tales que $4+2^q$ es múltiplo de $2q.$
Un corolario del PTF
Si $p$ es un primo impar y $a$ es primo con $p$, entonces $a^{\frac{p-1}{2}} \equiv \pm 1 \pmod{p}$. (Por ejemplo, todo cuadrado perfecto primo con 5 termina en 1 o en 9 o en 4 o en 6.)
La clave está en los residuos
Encontrar todas las parejas $(x,y)$ de dígitos, tales que el número $2x1y9$ sea múltiplo de 101.
Elemental pero difícil
Encontrar todos los números enteros positivos de cuatro cifras de la forma $n=abab$ (la primera y la tercera cifras son iguales, así como la segunda y la cuarta) y tales que el producto de sus cifras divide a $n^2$.
Divisible entre la suma de sus cifras
Demostrar que en un conjunto de 18 números enteros positivos, consecutivos y menores o iguales a 2009, hay uno que es divisible entre la suma de sus cifras.
Entrenamiento 3: 11, 12 y 13 (con selectivo)
El siguiente entrenamiento será los días 11, 12 y 13 de septiembre con examen selectivo el sábado 12 en la mañana. El lugar es la UAMCEH-UAT e iniciará el viernes en la tarde.
Con este selectivo ahora sí la preselección se reducirá a 15 --y esperaremos el norestense...