Publicaciones Recientes

Problema

Disputa por un territorio circular

Enviado por jmd el 10 de Enero de 2012 - 09:29.

Dos equipos, $A$ y $B$, disputan el territorio limitado por una circunferencia. $A$ tiene $n$ banderas azules y $B$ tiene $n$ banderas blancas ($n\geq 2$, fijo). Juegan alternadamente y $A$ comienza el juego.

Problema

Concéntrica al incírculo de ABC

Enviado por jmd el 10 de Enero de 2012 - 09:25.

Sean $ABC$ un triángulo con incentro $I$ y $\Gamma$ una circunferencia de centro $I$, de radio mayor al de la circunferencia inscrita y que no pasa por ninguno de los vértices. Sean $X_1$ el punto de intersección de $\Gamma$ con la recta $AB$ más cercano a $B$; $X_2$ y $X_3$ los puntos de intersección de $\Gamma$ con la recta $BC$ siendo $X_2$ más cercano a $B$; y $X_4$ el punto de intersección de $\Gamma$ con la recta $CA$ más cercano a $C$. Sea $K$ el punto de intersección de las rectas $X_1X_2$ y $X_3X_4$. Demostrar que $AK$ corta al segmento $X_2X_3$ en su punto medio.

Problema

Sucesión con primer entero en la posición 2007

Enviado por jmd el 10 de Enero de 2012 - 09:23.

Dado un entero positivo $m$, se define la sucesión $\{a_n\}_{n\geq 1}$ de la siguiente manera: $$a_1 = m/2,a_{n+1}=a_n\lceil a_n \rceil $$ Determinar todos los valores de $m$ para los cuales $a_{2007}$ es el primer entero que aparece en la sucesión.
Nota: Para un número real $x$ se define $\lceil x \rceil$ como el menor entero que es mayor o igual a $x$. Por ejemplo, $\lceil \pi \rceil = 4, \lceil 2007 \rceil = 2007$.

Problema

Vértice en la mediatriz

Enviado por jmd el 9 de Enero de 2012 - 23:07.

Sea $n\gt 1$ un entero impar. Sean $P_0$ y $P_1$ dos vértices consecutivos
de un polígono regular de $n$ lados. Para cada $k\geq 2$, se define $P_k$ como el vértice del polígono dado que se encuentra en la mediatriz de $P_{k-1}$ y $P_{k-2}$. Determine para qué valores de $n$ la sucesión $P_0, P_1, P_2,\ldots,$ recorre todos los vértices del polígono.

Problema

Circunferencia inscrita en un cuadrilátero

Enviado por jmd el 9 de Enero de 2012 - 23:06.

Dada una circunferencia $C$, considere un cuadrilátero $ABCD$ con sus cuatro lados tangentes a $C$, con $AD$ tangente a $C$ en $P$ y $CD$ tangente a $C$ en $Q$. Sean $X$ y $Y$ los puntos donde $BD$ corta a $C$, y $M$ el punto medio de $XY$ . Demuestre que $\angle{AMP} = \angle{CMQ}$.

Problema

Encontrar parejas --con dos restricciones

Enviado por jmd el 9 de Enero de 2012 - 23:05.

Determine todas las parejas $(a, b)$ de enteros positivos tales que $2a + 1$ y $2b - 1$ sean primos relativos y $a + b$ divida a $4ab + 1$.

Problema

Paseos de una ficha en un tablero

Enviado por jmd el 9 de Enero de 2012 - 23:04.

Los números $1,2,3,\ldots,n^2$ se colocan en las casillas de una cuadrícula de $n\times n$, en algún orden, un número por casilla. Una ficha se encuentra inicialmente en la casilla con el número $n^2$. En cada paso, la ficha puede avanzar a cualquiera de las casillas que comparten un lado con la casilla donde se encuentra. Primero, la ficha viaja a la casilla con el número 1, y para ello toma uno de los caminos más cortos (con menos pasos) entre la casilla con el número $n^2$ y la casilla con el número 1.

Problema

Suma de diferencias

Enviado por jmd el 9 de Enero de 2012 - 23:01.

Se consideran $n$ números reales $a_1,a_2,\ldots,a_n$ no necesariamente distintos. Sea $d$ la diferencia entre el mayor y el menor de ellos y sea $$s= \sum_{i\lt j}|a_i-a_j|$$ Demuestre que $(n-1)d\leq s\leq n^2d/4$ y determine las condiciones que deben cumplir estos $n$ números para que se verifique cada una de las igualdades.

Problema

Incírculo y circuncírculo de un escaleno rectángulo

Enviado por jmd el 9 de Enero de 2012 - 22:59.

En el triángulo escaleno $ABC$, con $\angle{BAC}=90$, se consideran las circunferencias inscrita y circunscrita. La recta tangente en $A$ a la circunferencia circunscrita corta a la recta $BC$ en $M$. Sean $S$ y $R$ los puntos de tangencia de la circunferencia inscrita con los catetos $AC$ y $AB$, respectivamente. La recta $RS$ corta a la recta $BC$ en $N$. Las rectas $AM$ y $SR$ se cortan en $U$. Demuestre que el triángulo $UMN$ es isósceles.

Problema

La recta pasa por el ortocentro

Enviado por jmd el 9 de Enero de 2012 - 22:43.

Sea $O$ el circuncentro de un triángulo acutángulo $ABC$ y $A_1$ un punto en el
arco menor $BC$ de la circunferencia circunscrita al triángulo $ABC$. Sean $A_2$ y
$A_3$ puntos en los lados $AB$ y $AC$ respectivamente, tales que $\angle{BA_1A_2} = \angle{OAC}$ y $\angle{CA_1A_3} = \angle{OAB}$. Demuestre que la recta $A_2A_3$ pasa por el ortocentro del triángulo $ABC$.

Distribuir contenido