Intermedio
Expresado como suma de potencias --de sus primeros dos divisores
Sean 1=d1<d2<d3⋯<dk=n los divisores del entero positivo n. Encuentra todos los números n tales que n=d22+d33.
P5 OMM 2006. Altura de triángulo pedal
Sean ABC un triángulo acutángulo y, AD,BE y CF sus alturas. La circunferencia con diámetro AD corta a los lados AB y AC en M y N, respectivamente. Sean P y Q los puntos de intersección de AD con EF y MN, respectivamente. Demuestra que Q es el punto medio de PD.
P3 OMM 2006. Números 1..2n en cuadrícula 2Xn
Sea n un número entero mayor que 1. ¿De cuántas formas se pueden acomodar todos los números 1,2,…,2n en las casillas de una cuadrícula de 2×n, uno en cada casilla, de manera que cualesquiera dos números consecutivos se encuentren en casillas que comparten un lado de la cuadrícula?
P2 OMM 2006. Semejantes si y sólo si ángulo de 60
Sea ABC un triángulo rectángulo con ángulo recto en A, tal que AB<AC. Sea M el punto medio de BC y D la intersección de AC con la perpendicular a BC que pasa por M. Sea E la intersección de la paralela a AC que pasa por M con la perpendicular a BD que pasa por B. Demuestra que los triángulos AEM y MCA son semejantes si y sólo si ∠ABC=60°.
P1 OMM 2006. Los parientes de un número son sus múltiplos
Sea ab un número de dos dígitos. Un entero positivo n es “pariente” de ab si:
- El dígito de las unidades de n también es b.
- Los otros dígitos de n son distintos de cero y suman a.
Por ejemplo, los parientes de 31 son 31, 121, 211 y 1111. Encuentra todos los números de dos dígitos que dividen a todos sus parientes .
P3 OMM 2005. Infinidad de enteros en sucesión de fracciones
Determina todas las parejas (a,b) de enteros distintos de cero para las cuales es posible encontrar un entero positivo x primo relativo con b y un entero cualquiera y, tales que en la siguiente lista hay una infinidad de números enteros:
a+xyb,a+xy2b2,a+xy3b3,…,a+xynbn,…
P1 OMM 2005. Circuncírculo en circuncírculo
Sea O el centro de la circunferencia circunscrita al triángulo ABC, y sea P un punto cualquiera sobre el segmento BC (P≠B y P≠C). Supón que la circunferencia circunscrita al triángulo BPO corta al segmento AB en R (R≠A y R≠B) y que la circunferencia circunscrita al triángulo COP corta al segmento CA en el punto Q (Q≠C y Q≠A).
- (i) Considera el triángulo PQR; muestra que es semejante al triángulo ABC y que su ortocentro es O.
- (ii) Muestra que las circunferencias circunscritas a los triángulos BPO,COP y PQR son todas del mismo tamaño.
P2 OMM 2004. Diferencia no menor que el centésimo del producto
¿Cuál es la mayor cantidad de enteros positivos que se pueden encontrar de
manera que cualesquiera dos de ellos a y b (con a a≠b) cumplan |a−b|≥ab100?
P4 OMM 2002. Hileras de dominó --con suma impar
Una ficha de dominó tiene dos números (no necesariamente diferentes) entre 0 y 6. Las fichas se pueden voltear, es decir, [4,5] es la misma ficha que [5,4]. Se quiere formar una hilera de fichas de dominó distintas, de manera que, en cada momento de la construcción de la hilera, la suma de todos los números de las fichas puestas hasta ese momento sea impar. Las fichas se pueden agregar de la manera usual a ambos extremos de la hilera, es decir, de manera que en cualesquiera dos fichas consecutivas aparezca el mismo número en los extremos que se juntan.
P2 OMM 2002. Circuncírculo de la mitad de un paralelogramo
Sean ABCD un paralelogramo y κ la circunferencia circunscrita al triángulo ABD. Sean E y F las intersecciones de κ con los lados (o sus prolongaciones) BC y CD, respectivamente (E distinto de B y F distinto de D). Demuestra que el circuncentro del triángulo CEF está sobre κ.
