Intermedio

Problemas de nivel estatal y similares.
Problema

Cuadrícula n por 4 (P4)

Enviado por jesus el 4 de Diciembre de 2010 - 17:32.

 Sea n un entero positivo. En una cuadrícula n×4, cada renglón es igual a

2 0 1 0

Un cambio es tomar tres casillas

  1. consecutivas en el mismo renglón y
  2. con dígitos distintos escritos en ellas

y cambiar los tres dígitos de estas casillas de la siguiente manera

0 → 1,         1 → 2,        2→0

Problema

Ternas que cumplen una ecuación (P1)

Enviado por jesus el 27 de Noviembre de 2010 - 12:55.

Encuentra todas las ternas de números naturales (a,b,c) que cumplan la ecuación abc=a+b+c+1.

Problema

Caracterización de alturas de un acutángulo

Enviado por jmd el 18 de Noviembre de 2010 - 22:13.

 En el triángulo acutángulo ABC, los puntos D,E,F, ubicados respectivamente en los lados BC,CA,AB, son tales que CD/CE=CA/CB AE/AF=AB/AC BF/BD=BC/BA Demostrar que AD,BE,CF son alturas.

Problema

Incentro y bisectrices

Enviado por jmd el 11 de Octubre de 2010 - 12:24.

 En el triángulo ABC, el ángulo BAC mide 60 grados. La bisectriz del ángulo ABC corta al lado AC en X y la bisectriz del ángulo BCA corta  al lado AB en Y. Demuestra que si I es el incentro del triángulo ABC, entonces IX=IY

Problema

Fracción con mínimo denominador

Enviado por jmd el 11 de Octubre de 2010 - 12:22.

 De todas las fracciones xy que cumplen 412010<xy<149 encuentra la que tenga menor denominador.

Problema

Seccionado recursivo

Enviado por jmd el 11 de Octubre de 2010 - 12:20.

 Sofía tiene 5 pedazos de papel en una mesa. Toma algunos de los pedazos, corta cada uno en 5 pedacitos y los vuelve a poner en la mesa. Ella repite este procedimiento varias veces hasta que se cansa. ¿Podría Sofía llegar a tener 2010 pedazos al final en la mesa?

Problema

19 números en un tablero circular

Enviado por jmd el 22 de Septiembre de 2010 - 12:57.

En un tablero circular hay 19 casillas numeradas en orden del 1 al 19 (a la derecha del 1 está el 2, a la derecha de éste está el 3 y así sucesivamente, hasta el 1 que está a la derecha del 19). En cada casilla hay una ficha. Cada minuto cada ficha se mueve a su derecha el número de la casilla en que se encuentra en ese momento más una; por ejemplo, la ficha que está en el lugar 7 se va el primer minuto 7 + 1 lugares a su derecha hasta la casilla 15; el segundo minuto esa misma ficha se mueve a su derecha 15 + 1 lugares, hasta la casilla 12, etc. Determinar si en algún momento todas las fichas llegan al lugar donde empezaron y, si es así, decir cuántos minutos deben transcurrir.

Problema

¿Cómo se prueba paralelismo?

Enviado por jmd el 22 de Septiembre de 2010 - 12:47.

En el triángulo isósceles ABC, con AB=AC, D es un punto sobre la prolongación de CA tal que DB es perpendicular a BC, E es un punto sobre la prolongación de BC tal que CE=2BC, y F es un punto sobre ED tal que FC es paralela a AB. Probar que FA es paralela a BC.

 

Problema

Combinatoria en el campamento

Enviado por jmd el 21 de Septiembre de 2010 - 19:44.

 En un campamento de verano que va a durar n semanas se quiere dividir el tiempo en 3 períodos de manera que cada período empiece en un lunes y termine un domingo. El primer período se dedicará a labores artísticas, el segundo será para deportes y en el tercero se hará un taller tecnológico. Durante cada período se escogerá un lunes para que un experto en el tema del período dé una plática. Sea C(n) el número de formas en que puede hacerse el calendario de actividades.

Problema

Función de un primo con 6 divisores

Enviado por jmd el 10 de Septiembre de 2010 - 11:28.

Encontrar todos los números primos p para los cuales el número p2+11 tiene exactamente 6 divisores positivos (el 1 y el número incluidos).

Distribuir contenido