Problemas - Álgebra
Ejercicio en diferencia de cuadrados
La diferencia de dos números es 2 y la diferencia de sus cuadrados es 8. ¿Cuánto vale su suma?
Ejercicio de asociación de ideas
Calcular el valor de $x^3+1/x^3$ si se sabe que $x+1/x=9$.
Ejercicio de reconocimiento de un producto notable
Calcular el valor de
$$\frac{2x+8}{\sqrt{2x+1}+\sqrt{x-3}}$$
si se sabe que $\sqrt{2x+1}-\sqrt{x-3}=2$.
Examen con castigo al tin marín
En un examen de 10 preguntas, Juan las respondió todas y obtuvo 29 puntos. Si ledieron 5 puntos por cada respuesta correcta y -2 por cada incorrecta ¿cuántas preguntas respondió Juan correctamente?
Ejercicio con progresión aritmética
En una progresión aritmética la suma del tercero y el quinto términos es 14 y la suma de los primeros 12 términos es 129. Uno de sus términos es 193 ¿qué posición ocupa en la progresión?
Razonado geométrico
Las diagonales de un rectángulo se cruzan en un punto P de tal manera que la distancia al lado más corto es 8 cm mayor que la distancia al lado más largo. Si el perímetro del rectángulo es 88 cm ¿cuál es el área del rectángulo?
Un acertijo de Lewis Carroll
Un hombre camina durante 5 horas. Primero lo hace a lo largo de un tramo a nivel, después subiendo una loma. Al llegar arriba se regresa y recorre el camino a lo largo de la misma ruta pero de regreso. Caminó a 4 km/h en el camino a nivel, a 3 km/h de subida y a 6 km/h de bajada. Encontrar la distancia que recorrió.
Naranjas y manzanas
Doña Felix vende fruta en el mercado. Un día llevó a vender manzanas y naranjas. La fruta estaba en canastos, los cuales contenían solamente naranjas o solamente manzanas. Las cantidades de fruta en los canastos eran 8,12,15,17,19,22. Después de que vendió un canasto de fruta se dio cuenta de que el número de naranjas era el doble que el de manzanas. ¿Cuántas naranjas y cuántas manzanas le quedaron después de esa venta?
Parejas especiales
Una pareja de enteros es especial si es de la forma $(n,n-1)$ o de la forma $(n-1,n)$ con $n$ un entero positivo. Muestra que una pareja $(n.m)$ de enteros positivos que no es especial, se puede representar como suma de dos o más parejas especiales diferentes si y sólo si los enteros $n$ y $m$ satisfacen la desigualdad $n+m\geq(n-m)^2$.
Nota: la suma de dos parejas se define como $(a.b)+(c,d)=(a+c,b+d)$
Problema de álgebra --realmente difícil
Calcular la medida de los catetos $a,b$ de un triángulo rectángulo de área 4 e hipotenusa $\sqrt{27}$.