Problemas - Álgebra
P3. Desigualdades en un selectivo
Sean $a,b,c$ números reales positivos tales que $abc=\frac{1}{8}$. Demuestra que: \[a^2+b^2+c^2+a^2b^2+a^2c^2+b^2c^2\geq\frac{15}{16}\]
2.- Ecuación de ternas en progresión Geométrica
Determina todas las ternas de números naturales $(a,b,c)$ con $0<a<b<c$ en progresión geométrica para las cuales se cumplen las siguientes dos ecuaciones:
$$a+b+c=35$$
$$a^2+b^2+c^2=525$$
P1. La lista de David
David hace una lista de 2024 números. El primero de ellos es 1, y los demás se obtienen de sumarle al anterior alguno de los números 1, 2, 3, 4, 5, 6, 7, 8 ó 9. Si ningún número de la lista termina en 0, ¿cuál es el mayor valor que puede tener el último número de la lista?
P7. Raíces de cuadráticas
Consideremos la ecuación cuadrática $x^2+a_0x+b_0$ para algunos reales $(a_0, b_0)$. Repetimos el siguiente proceso tantas veces como sea posible:
Tomamos $r_i$, $s_i$ las raíces de la ecuación $x^2+a_ix +b_i=0$ y $c_i = \min\{r_i, s_i\}$. Y escribimos la nueva ecuación $x^2 +b_ix +c_i$. Es decir, para la repetición $i+1$ del proceso $a_{i+1} = b_i$ y $b_{i+1} = c_i$
Decimos que $(a_0, b_0)$ es una pareja interesante si, después de un número finito de repeticiones, cuando volvemos a realizar el proceso de la nueva ecuación escrita es la misma que la anterior, de manera que $(a_{i+1}, b_{i+1}) = (a_i,b_i)$
Nota: Las raíces de una ecuación son los valores de $x$ tales que $x^2+ax+b=0$
P1. Ecuación cuadrática con sumatoria
P6 Primer problema real de funcionales
Sea $\mathbb{N}$ el conjunto de los enteros positivos {1, 2, ...}. Determina todas las funciones $f: \mathbb{N} \rightarrow \mathbb{N}$ tales que cualesquiera $m, n \in \mathbb{N}$ se cumple al mismo tiempo que:
$$f(m+n) \ |\ f(m) + f(n)$$ $$f(m)f(n)\ | \ f(mn)$$
Nota: $a | b$ quiere decir que el número entero $a$ divide al número entero $b$.
P1 OMM 37
Encuentra todos los números de 4 dígitos tales que la suma de los cuadrados de sus dígitos es igual al doble de la suma de sus dígitos.
1.- Un problema Clásico de Factorización en Teoría de números
Determina todas las parejas de enteros positivos $(p, k)$ con $p$ un número primo tales que:
$p^k-k^p=9k$
4.- El término 2023
Sean $x_1$, $x_2$, ..., $x_{2023}$ números reales positivos, todos distintos entre sí, tales que
$a_n$ = $\sqrt{(x_1 + x_2 + ... + x_n)(\frac{1}{x_1} + \frac{1}{x_2} + ... + \frac{1}{x_n})}$
es entero para todo $n$ = 1, 2, ..., 2023. Demuestra que $a_{2023} \geq 3034$.
3.- Un polinomio, una sucesión infinita
Para cada entero $k \geq 2$, determina todas las sucesiones infinitas de enteros positivos $a_1, a_2, \dots$ para los cuales existe un polinomio $P$ de la forma $P(x) = x^k + c_{k-1}x^{k-1} + ... + c_1x + c_0$, con $c_0, c_1, \dots , c_{k-1}$ enteros no negativos, tal que
$P(a_n) = a_{n+1}a_{n+2} \cdots a_{n+k}$
para todo $n \geq 1$