En la pizarra está escrita la ecuación $$(x - 1)(x - 2)\cdots (x - 2016) = (x -1)(x- 2)\cdots (x-2016)$$ que tiene 2016 factores lineales en cada lado. Determinar el menor valor posible de $k$ para el cual pueden borrarse exactamente $k$ de estos 4032 factores lineal, de modo que al menos quede un factor en cada lado y la ecuación que resulte no tenga soluciones reales.