XX_IRMO_2007
Relaciones combinatorias
Sean $r,n$ enteros no negativos tales que $r\leq{n}$.
a) Demostrar que $$\frac{n+1-2r}{n+1-r}C(n,r)$$ es un entero.
b) Demostrar que
$$ \sum_{r=0}^{\lfloor n/2\rfloor}\frac{n+1-2r}{n+1-r}C(n.r)<2^{n-2}$$ para todo $n\geq 9$.
(Nota: $\lfloor x\rfloor$ es el mayor entero menor o igual que x, y $C(n,r)$ es el número de subconjuntos de tamaño r tomados de un conjunto de tamaño n.)
Viaje redondo
Air Michael y Air Patrick operan vuelos directos que conectan Belfast, Cork, Dublin, Galway, Limerick y Waterford. Para cada par de ciudades exactamente una de las aerolíneas opera la ruta (en ambos sentidos) conectando las ciudades.Demostrar que hay cuatro ciudades para las cuales una de las aerolíneas opera un viaje redondo. (Un viaje redondo para las ciudades P,Q,R,S es un viaje que va de P a Q, de Q a R, de R a S y de S a P.)
Senos cuadráticos
Todos los primos tales que...
Encontrar todos los números primos $p,q$ tales que $p$ divide a $q+6$ y $q$ divide a $p+7$.
Una recta variable que pasa por un punto fijo
El punto P está fijo en una circunferencia y el punto Q está fijo en una recta. Un punto variable R se mueve sobre la circunferencia pero sin alinearse con P y Q. La circunferencia por P,Q y R corta a la recta de nuevo en V. Demostrar que la recta VR pasa por un punto fijo.