Estatal OMM Tamaulipas 2015

Problema

Problema 4(C)

Enviado por jmd el 30 de Agosto de 2015 - 08:55.

En una circunferencia se marcan 60 puntos, de los cuales 30 se colorean de rojo, 20 de azul y 10 de verde. La circunferencia queda así dividida en 60 arcos y a cada uno de ellos se les asigna un número de acuerdo a la siguiente regla:

--1 si une un punto rojo con uno verde
--2 si une un punto rojo con uno azul
--3 si une un punto azul con uno verde
--0 si une dos puntos del mismo color

¿Cuál es la mayor suma posible de los números asignados a los arcos? (Justifica tu respuesta.)

Problema

Problema 3(G)

Enviado por jmd el 30 de Agosto de 2015 - 08:52.
Sea $ABC$ un triángulo con $AB\neq{AC}$. Sean $H$ su ortocentro, $O$ su circuncentro y $D$ el punto medio de $BC$. Sea $P$ la intersección de $AO$ y $HD$. Demostrar que los triángulos $AHP$ y $ABC$ tienen el mismo baricentro.
Problema

Problema 2(N)

Enviado por Roberto Alain R... el 29 de Agosto de 2015 - 19:25.

Para un entero positivo n denotamos con S(n) la suma de los dígitos y con U(n) el dígito de las unidades. Determinar todos los enteros positivos n con la propiedad de que n=S(n)+U(n)2  (Nota: Para n=324, S(n)=9 y U(n)=4.)

Problema

Problema 1(A)

Enviado por Roberto Alain R... el 29 de Agosto de 2015 - 19:19.

Calcula el valor de n que cumpla la siguiente ecuación: $$\frac{1+3+5+...+2n-1}{2+4+6+...+2n} = \frac{2014}{2015}$$

Distribuir contenido