Selectivo Final OMM-Tamaulipas 2008

Problema

El multiplo de 2000 más pequeño que es suma de los primeros cuadrados

Enviado por jesus el 18 de Octubre de 2008 - 20:18.

Encuentra el número entero $ n > 0 $ más pequeño que satisface que 2000 divide a

$$ 1^2 + 2^2 + \cdots + n^2 $$.

Problema

Elige los signos en la suma

Enviado por jesus el 18 de Octubre de 2008 - 20:11.

¿Existirá alguna manera de elegir los símbolos $ + $ y $ - $ para que se satisfaga la igualdad $ \pm 1 \pm 2 \pm \cdots \pm 100 = 13^2 $ ?

Problema

Trisección de un segmento y triángulos equilateros

Enviado por jesus el 18 de Octubre de 2008 - 20:03.

Sea $ ABC $ un triángulo equilatero, $ M $ el punto medio de $ BC $. Considera $ P $ y $ Q $ los dos puntos fuera del triángulo $ ABC $ tales que los triángulos $ BMP $ y $ MQC $ son equilateros. Llamemos $ S $ y $ T $ a los puntos de intersección de $ AP $ y $ AQ $ con el segmento $ BC $ respectivamente. Demuestra que $ S $ y $ T $ trisectan al segmento $ BC $.

Problema

Un ejercicio clásico de potencias

Enviado por jesus el 18 de Octubre de 2008 - 19:53.

En la siguiente figura, desde un vértice del cuadrado está trazada una tangente. El lado del cuadrado mide 1 y la longitud de la tangente es 2. Encuentra el radio de la circunferencia. 

Problema

Cómo rellenar un rectángulo con fichas

Enviado por jesus el 17 de Octubre de 2008 - 19:51.

Para cada par de números naturales $a,b>1$ definamos $P_{a \times b}$ como el polígono que se forma a partir de un rectángulo de $a \times b$ removiendo dos cuadrados de $1 \times 1$ en dos esquinas opuestas . Demuestra que $P_{a \times b}$ se puede cubrir con rectángulitos de $1 \times 2$ sin que se traslapen si y sólo si $ a $ y $ b $ tienen distinta paridad.

Distribuir contenido