Publicaciones Recientes
Una forma complicada de definir una función elemental
Sea $N^* = \{1, 2, 3, \ldots \}$. Halle todas las funciones $f: N^* \mapsto N^*$ tales que:
- i) si $x < y$, entonces $f(x) < f(y)$
- ii) $f(y f(x)) = x^2f(xy)$, para todos los $x, y\in N^*$.
¿Cómo se encierra un n-polígono en un paralelogramo?
Muestre que, para cualquier polígono convexo de área uno, existe un paralelogramo de área 2 que lo contiene.
Primos que son diferencia de capicúas consecutivos
Un número natural es capicúa si al escribirlo en notación decimal se puede leer de igual forma de izquierda a derecha y de derecha a izquierda. Ejemplos: 8, 23432, 6446. Sean $x_1 < x_2 < \ldots < x_i < x_{i+1} < ... $ todos los números capicúas. Para cada $i$ sea $y_i=x_{i+1} - x_i$. ¿Cuántos números primos distintos tiene el conjunto $\{y_1, y_2, y_3 \ldots \}$?
¿Cómo era el generalizado de senos?
A partir del triángulo $T$ de vértices $A, B, C$, se construye el hexágono $H$ de vértices $A_1, A_2, B_1, B_2, C_1, C_2$ como se muestra en la figura. Demostrar que
Construcción de un trapecio inscrito
Se dan la circunferencia $\Gamma$ y los números positivos $h, m$ de modo que existe un trapecio $ABCD$, inscrito en $\Gamma$, de altura $h$ y tal que la suma de sus bases $AB$ y $CD$ es $m$. Construir el trapecio $ABCD$.
Dos sucesiones recursivas
Sean $(a_n)$ y $(b_n)$ dos sucesiones de números enteros que verifican las siguientes condiciones:
- i) $a_0 = 0, b_0 = 8$
- ii) $a_{n+2} = 2a_{n+1}-a_n+2, b_{n+2}=2b_{n+1}-b_n$
- iii) $a_n^2+b_n^2$ es un cuadrado perfecto para todo $n$.
Determinar al menos dos valores del par $(a_{1992}, b_{1992})$.
¿Sabes geometría analítica? (alternativa: Stewart)
En un triángulo equilátero $ABC$, cuyo lado tiene longitud 2, se inscribe la circunferencia $\Gamma$.
- a) Demostrar que para todo punto $P$ de $\Gamma$, la suma de los cuadrados de sus distancias a los vértices $A, B$ y $C$ es 5.
- b) Demostrar que para todo punto $P$ de $\Gamma$, es posible construir un triángulo cuyos lados tienen las longitudes de los segmentos $AP, BP$ y $CP$, y cuya área es $\sqrt{3}/4$
Suma de las raíces de un polinomio
Sean dados la colección de $n$ números reales positivos $a_1 < a_2 < a_3 < \ldots < a_n$, y la función$$f(x)=\frac{a_1}{x+a_1}+\frac{a_2}{x+a_2}+\ldots +\frac{a_n}{x+a_n}$$ Determinar la suma de las longitudes de los intervalos, disjuntos dos a dos, formados por todos los valores de $x$ tales que $f(x)\gt 1$.
Suma de una sucesión
Para cada entero positivo $n$, sea $a_n$ el último dígito del número $1+2+3+ ...+n$. Calcular $a_1 + a_2 + a_3 +\ldots+a_{1992}$.
Construir un triángulo (dados ortocentro y dos puntos medios)
Dados 3 puntos no alineados $M, N, P$, sabemos que $M$ y $N$ son puntos medios de dos lados de un triángulo y que $P$ es el punto de intersección de las alturas de dicho triángulo. Construir el triángulo.