Publicaciones Recientes

Problema

19 números en un tablero circular

Enviado por jmd el 22 de Septiembre de 2010 - 12:57.

En un tablero circular hay 19 casillas numeradas en orden del 1 al 19 (a la derecha del 1 está el 2, a la derecha de éste está el 3 y así sucesivamente, hasta el 1 que está a la derecha del 19). En cada casilla hay una ficha. Cada minuto cada ficha se mueve a su derecha el número de la casilla en que se encuentra en ese momento más una; por ejemplo, la ficha que está en el lugar 7 se va el primer minuto 7 + 1 lugares a su derecha hasta la casilla 15; el segundo minuto esa misma ficha se mueve a su derecha 15 + 1 lugares, hasta la casilla 12, etc. Determinar si en algún momento todas las fichas llegan al lugar donde empezaron y, si es así, decir cuántos minutos deben transcurrir.

Problema

¿Cómo se prueba paralelismo?

Enviado por jmd el 22 de Septiembre de 2010 - 12:47.

En el triángulo isósceles ABC, con AB=AC, D es un punto sobre la prolongación de CA tal que DB es perpendicular a BC, E es un punto sobre la prolongación de BC tal que CE=2BC, y F es un punto sobre ED tal que FC es paralela a AB. Probar que FA es paralela a BC.

 

Problema

Combinatoria en el campamento

Enviado por jmd el 21 de Septiembre de 2010 - 19:44.

 En un campamento de verano que va a durar n semanas se quiere dividir el tiempo en 3 períodos de manera que cada período empiece en un lunes y termine un domingo. El primer período se dedicará a labores artísticas, el segundo será para deportes y en el tercero se hará un taller tecnológico. Durante cada período se escogerá un lunes para que un experto en el tema del período dé una plática. Sea C(n) el número de formas en que puede hacerse el calendario de actividades.

Entrada de blog

¿Es el aprendizaje del álgebra un problema resoluble con tecnología?

Enviado por jmd el 16 de Septiembre de 2010 - 22:45.

La computadora, se ha dicho, es una solución en busca de problemas. Y en la enseñanza de las matemáticas se postuló, desde la aparición de esa herramienta maravillosa, que la PC (y, antes de ella, las calculadoras) podría ser la solución a las dificultades que los estudiantes enfrentan al aprender esa "ciencia incomprensible" (la etiqueta es espuria, pero de aceptación universal) denominada álgebra .

Problema

¿Cómo se demuestra perpendicularidad?

Enviado por jmd el 12 de Septiembre de 2010 - 11:38.

En los lados CA y AB del triángulo equilátero ABC, se eligen respectivamente los puntos D y E, de tal manera que 2BE=EA y 2AD=DC. Si P es el punto de intersección de CE y BD, demostrar que AP es perpendicular a CE.
 

Problema

Triángulo conocido

Enviado por jmd el 12 de Septiembre de 2010 - 10:02.

Dos lados de un triángulo forman un ángulo de 60 grados, y uno mide el doble que el otro. ¿Cuánto miden los otros dos ángulos? Justifica tu respuesta.

Problema

Función de un primo con 6 divisores

Enviado por jmd el 10 de Septiembre de 2010 - 11:28.

Encontrar todos los números primos p para los cuales el número p2+11 tiene exactamente 6 divisores positivos (el 1 y el número incluidos).

Problema

Soluciones enteras bajo condición de divisibilidad

Enviado por jmd el 10 de Septiembre de 2010 - 11:25.

 Encontrar, con prueba, todas las parejas (a,b) de enteros positivos tales que ab2+b+7 divide a a2b+a+b

Problema

Puntos en la base de un isósceles

Enviado por jmd el 10 de Septiembre de 2010 - 10:02.

 En la base BC del isósceles ABC (con AB=AC) se eligen los puntos M,N en el orden B,M,N,C. Demostrar que, si existe un punto P tal que MP=BM,PN=NC y MPN=2CBA entonces 2MAN+MPN=180

Problema

Puntos en la hipotenusa de un isósceles rectángulo

Enviado por jmd el 9 de Septiembre de 2010 - 18:48.

 En la hipotenusa BC del triángulo isósceles rectángulo ABC  se han elegido los puntos M,N en el orden B,M,N,C, de tal manera que BM2+NC2=MN2. Encontrar, con prueba, la medida del ángulo MAN

Distribuir contenido