Publicaciones Recientes
¡Vámonos Recio!... a San Carlos...
Olimpiada Mexicana de
Matemáticas
Delegación Tamaulipas
El abuelo y la niña generalizado
Kika tiene $ n $ objetos. Un día llega de la escuela y… ¡Abuelo! ¡Abuelo! Perdí $ x $. Y el abuelo la consuela: piensa en que si hubieses encontrado $ x $, ahora tendrías $ y $ veces los que ahora tienes. Encontrar todas las parejas $(x, n)$ en términos de $ y $, para que el diálogo entre la niña y el abuelo tenga sentido en enteros positivos ($x, y, n$ enteros positivos).
(El problema original dice: perdí 2. Y el abuelo dice: si hubieses encontrado 2 ahora tendrías 5 veces los que ahora tienes.)
El abuelo y la niña
Construir un cuadrado con tres puntos dados
Se tienen dados, un vértice V de un cuadrado y dos puntos A y B. Los puntos A y B se encuentran sobre dos lados (o prolongaciones de los lados) del cuadrado antes mencionado. Estos dos lados son precisamente los opuestos al vértice V, es decir, los que no lo contienen.
Usando regla y compás, construye el cuadrado.
— Problema sugerido por Hugo Espinosa Pérez 10/Oct/2008 15:07
Reporte norestense
En resumen, Tamaulipas quedó segundo. Quien haya seguido el desempeño de la preselección Tamaulipas de la XXII OMM tiene el suficiente contexto para decidir si ese segundo lugar debe celebrarse o bien lamentarse.
En sucesión modular busca el ciclo
Considere la sucesión $1, 9, 8, 3, 4, 3, \ldots$ en la cual $a_{n+4}$ es el dígito de la unidades de $a_n + a_{n+3},$ para $ n $ entero positivo. Demuestre que $a_{1985}^2 +a_{1986}^2+ \ldots + a_{2000}^2$ es un múltiplo de $ 2 $.
¿Cuál es la invariante?
En las siguientes cuadriculas, se dice que dos cuadrados son adyacentes, si comparten un lado. Considere la siguiente operación T: se eligen cualesquiera dos números en cuadrados adyacentes y a ambos se les suma el mismo entero. ¿Se puede transformar el tablero de la izquierda en el de la derecha mediante iteraciones de T?.
Un problema de igualdad de areas
Sean $ABCD$ un paralelogramo, $ E $ un punto sobre la recta $AB$, mas allá de $ B $, $ F $ un punto sobre la recta $AD$, mas allá de $ D $, y $ K $ el punto de intersección de las rectas $ED$ y $BF$. Demuestre que los cuadriláteros $ABKD$ y $CEKF$ tienen la misma área.
suma de divisores
Demuestre que hay una infinidad de enteros positivos $ n $ tales que la suma de los divisores positivos del número $2008^n-1$ es divisible entre $ n $.
Un sistema diofantino irracional
Determine todas las parejas $(x,y)$ de enteros positivos, tales que $x+y=a^n$ y $x^2+y^2=a^m$ para algunos enteros positivos $a, m, n.$