Publicaciones Recientes

Problema

P3. OMM 1990. ¿Inducción? OK ¿Pero te queda claro qué debes demostrar?

Enviado por jmd el 7 de Julio de 2010 - 02:17.

Pruebe que $n^{n-1}-1$ es divisible entre $(n-1)^2$ para todo entero $n\geq2$

Problema

P2. OMM 1990. Relación de inradios

Enviado por jmd el 7 de Julio de 2010 - 02:15.

Sea $ABC$ un triángulo rectángulo con ángulo recto en $B$, y $H$ el punto de intersección del lado $AC$ y la altura por $B$. Llamemos $r,r_1,r_2$ a los radios de las circunferencias inscritas en los triángulos $ABC,ABH,HBC$, respectivamente. Encuentre una igualdad que relacione $r,r_1,r_2$.

Problema

P1. OMM 1990. Paseos en una cuadrícula

Enviado por jmd el 7 de Julio de 2010 - 02:12.

Encuentre el total de caminos que hay del punto $A$ a línea $l$ en la red de la siguiente figura, si en un camino solo está permitido ir hacia la izquierda.

Entrada de blog

Dispositivos: experimentales de Piaget y didácticos de Brousseau

Enviado por jmd el 6 de Julio de 2010 - 12:40.

Voy a elaborar en este post (en el sentido de decir más) sobre la diferencia entre interpretar las respuestas adolescentes ante una tarea de resolución de problemas -- en términos de sus posibles razonamientos y explicando sus errores según un esquema teórico-- y hacer lo mismo pero en una situación de enseñanza.

En particular, abundaré sobre la diferencia entre los dispositivos experimentales de Jean Piaget y las situaciones didácticas de Guy Brousseau. Usaré sendos ejemplos para que el lector pueda tener una comprensión inicial de la naturaleza de los dispositivos piagetianos, y las situaciones didácticas de Guy Brousseau.

Problema

P6. OMM 1989. Trayectorias en retícula triangular

Enviado por jmd el 6 de Julio de 2010 - 11:25.

Siguiendo las líneas de la figura ¿Cuántos caminos hay para ir del punto $A$ al punto $B$ que no pasen dos veces por el mismo punto y que solo avancen hacia abajo y hacia los lados pero no hacia arriba?
 


 

Problema

P5. OMM 1989. Círculos tangentes

Enviado por jmd el 6 de Julio de 2010 - 11:23.

Sean $C_1$ y $C_2$ dos círculos tangentes de radio 1 dentro de un círculo $C$ de radio 2. Sea $C_3$ un círculo dentro de $C$ tangente a cada uno de los círculos $C,C_1,C_2$. Sea $C_4$ un círculo dentro de $C$ tangente a $C,C_1,C_3$. Demuestre que los centros de $C,C_1,C_3,C_4$ son los vértices de un rectángulo.

Problema

P4. OMM 1989. Números en expansión decimal

Enviado por jmd el 6 de Julio de 2010 - 11:18.

Encuentre el entero positivo mas pequeño $ n $ tal que, si su expansión decimal es $ n=a_ma_{m-1}\ldots{a_2}a_1a_0 $ y $r$ es el número cuya expansión decimal es $r=a_1a_0a_ma_{m-1}\ldots{a_2}0$, entonces $r$ es el doble de $n$.
 

Problema

P3. OMM 1989. Número de 1989 cifras

Enviado por jmd el 6 de Julio de 2010 - 11:16.

Pruebe que no existe un número positivo de 1989 cifras que tenga al menos tres de ellas iguales a 5 y tal que la suma de todas las cifras sea igual al producto de las mismas.

Problema

P2. OMM 1989. Múltiplos encadenados

Enviado por jmd el 6 de Julio de 2010 - 11:13.

Encuentre dos números enteros $a$ y $b$ tales que:

  • $b^2$ es múltiplo de $a$;
  • $a^3$ es múltiplo de $b^2$;
  • $b^4$ es múltiplo de $a^3$;
  • $a^5$ es múltiplo de $b^4$;
  • pero $b^6$ no es múltiplo de $a^5$.
Problema

P1. OMM 1989. Áreas y medianas

Enviado por jmd el 6 de Julio de 2010 - 11:09.

Considere un triángulo $ABC$ en el que la longitud del lado $AB$ es 5, las medianas por $A$ y por $B$ son perpendiculares entre sí y el área es 18. Hallar las longitudes de los lados $BC$ y $AC$.

Distribuir contenido