Publicaciones Recientes
Una función recursiva
Sea $f$ una función, definida en el conjunto de los enteros mayores o iguales que cero, que verifica las dos condiciones siguientes:
- (I) Si $n = 2^j -1$, para $n = 0, 1, 2,\ldots$, entonces $f(n)=0$
- (II) Si $n\neq 2^j-1, para n = 0, 1, 2,\ldots, entonces $f(n+1) = f(n) -1$.
a) Demostrar que para todo entero $n$, mayor o igual que cero, existe un entero $k$, mayor que cero, tal que $f(n)+n= 2^k - 1$
b) Calcular $f (2^{1990})$
Los 100 nueves!!!
Encuentra las ultimas 4 cifras del numero que se forma al sumar 9+99+999+9999+99999+999999+..........+ 999......999 (el ultimo numero esta formado por 100 nueves).
Soluciones infinitas
Mostrar que hay una infinidad de pares de números naturales que satisfacen la ecuación
2x^2 - 3x = 3y^2: $$2x^2 -3x + 1 =3y^2 + y$$
Rango de una función
Sea la función $f$ definida sobre el conjunto $\{1, 2, 3,\ldots\}$ tal que
$$f(1) = 1$$
$$f(2n + 1) = f(2n) +1$$
$$f(2n) = 3f(n)$$
Determinar el conjunto de valores que toma $f$
Una propiedad del incentro
La circunferencia inscrita en el triángulo $ABC$, es tangente a los lados $AB$ y $AC$ en los puntos $M$ y $N$, respectivamente. Las bisectrices de $A$ y $B$ intersecan a $MN$ en los puntos $P$ y $Q$, respectivamente. Sea $O$ el incentro del triángulo $ABC$. Probar que $MP\cdot OA = BC\cdot OQ$
Desigualdad sobre los lados de un triángulo
Sean $a, b, c$ las longitudes de los lados de un triángulo. Probar que:
$$|\frac{a-b}{a+b}+\frac{b-c}{b´c}+\frac{c-a}{ca}|<\frac{1}{16}$$
Desigualdad trigonométrica
Sean $x, y, z$ tres números reales tales que $0 < x < y < z < \pi/2$. Demostrar la desigualdad:
$$\pi/2 + 2\sin x\cos y + 2\sin y \cos z\gt \sin 2x + \sin 2y + \sin 2z$$
Sistema no lineal de ecuaciones
Determinar todas las ternas de números reales que satisfacen el sistema de
ecuaciones siguiente:
\begin{eqnarray*}
x + y - z &=& -1\\
x^2 - y^2 + z^2 &=& 1\\
-x^3 + y^3 + z^3 &=& -1
\end{eqnarray*}
Sucesión libre de promedios
Considere los conjuntos de $n$ números naturales diferentes de cero en los cuales no hay tres elementos en progresión aritmética. Demuestre que, en uno de esos conjuntos, la suma de los inversos de sus elementos es máximo.
Ejercicio no trivial en álgebra
Considere las expresiones de la forma $x + yt + zt^2$, con $x, y, z$ números racionales, y $t^3=2$. Demuestre que si $x + yt +zt^2\neq 0$, entonces existen $u, v, w$ racionales tales que $(x + yt + z^2)(u + vt + wt^2)= 1$