Publicaciones Recientes
Cambio de dígitos
Sean a y b enteros positivos de 8 dígitos cada uno, tales que al quitar cualquier dígito de a (pero solo uno) y colocar el correspondiente en posición con b, se cumple que el número formado es divisible entre 7 (en cualquiera de los 8 posibles cambios). Demuestra que b es divisible entre 7.
Equilátero seccionado (3G, take_home_1)
Sea ABC un triángulo equilátero y A’, B’ , C’, puntos sobre los lados BC, CA y AB, respectivamente, tales que AC′/C′B=BA′/A′C=CB′/B′A=2
El poder cognitivo de un framing
Una propiedad trivial de la potencia de un punto
Sean dados tres puntos distintos O, P, Q en el plano. Demostrar que OP=OQ si y sólo si P y Q tienen la misma potencia respecto a un círculo cualquiera con centro en O.
IMO 2009, Problema 3
Sea s1,s2,s3,… una sucesión estrictamente creciente de enteros positivos tal que las
subsucesiones
ss1,ss2,ss3,… y ss1+1,ss2+1,ss3+1,…
son ambas progresiones aritméticas. Demostrar que la sucesión s1,s2,s3,... es también una progresión
ONMAS 2009 (GDL, Jal., 19/6/09)
Un poco tarde pero aquí están los problemas de la Olimpíada Nacional para Alumnos de Secundaria en su novena edición. (Felicidades a Claudia Lorena y Bernardo por su plata --segundo y tercer nivel respectivamente-- ambos miembros de la preselección Tamaulipas 2009 de la OMM.)
Reto para novicios: el problema 4 de la IMO 2009 (invertido y con 4 incisos)
Aprovechando el entusiasmo de Brandon voy a poner aquí una variante del problema 4 de la IMO 2009, desglosándolo e invirtiéndolo con la idea de reducir su complejidad. Pero antes de plantear el reto a los miembros de la preselección Tamaulipas 2009, permítaseme comentar dos o tres cosas sobre ese problema, sobre su dificultad.
IMO 2009: México en el lugar 50
Según los datos en el sitio http://imo-official.org/results.aspx, México se colocó en la L IMO en el lugar 50. El primer lugar lo ocupó China y el último (104) Argelia. La delegación mexicana obtuvo 74 puntos, la china 221 y la argelina 2.
Problema 5(N)
El alumno menos aventajado del salón canceló el 6 en 16/64 y obtuvo 1/4 --la respuesta correcta. Encontrar todos los pares de números de dos cifras ab, bc tales que ab/bc=a/c --con a,b,c dígitos diferentes. (Es decir, todos los casos en que este alumno podría acertar con su método al simplificar quebrados de dos cifras.)
IMO 2009 Problema 1
Sea n un entero positivo y sean a1,a2,...,ak(k≥2) enteros distintos del conjunto 1,...,n, tales que n divide a ai(ai+1−1), para i=1,...,k−1. Demostrar que n no divide a ak(a1−1).
