Publicaciones Recientes
Convocatoria OMM 2011, Delegación Tamaulipas
Para todos los que estaban esperando la convocatoria de la Olimpiada Mexicana de Matemáticas en Tamaulipas, la pueden descargar del atachado --convertido a PDF, 1.8mb. El día 2 de septiembre es el concurso ciudades y el 9 el estatal. (Información proporcionada por el delegado Ramón J. Llanos Portales.)
Como dicen en Viento Libre: "tarde pero sin sueño" (En la OMM, Tamaulipas sólo puede mejorar... ¡ánimoooooooooo!)
Los saluda
jmd
Prototipos, ejemplos generales y categorización
Voy a elaborar en este post sobre un tema que atrajo mi atención hace algunos meses y que en estos días volví a estudiar. Es el tema de los prototipos --y su utilidad en la educación matemática.
¿Definir o no definir?
Si bien es cierto que las matemáticas escolares o, mejor dicho, la didáctica de las matemáticas escolares, rehuyen las definiciones, también lo es que en los cursos universitarios de matemáticas, y ciertamente en las matemáticas de concurso, las definiciones formales son imposibles de evitar (bueno, si es que realmente se quiere enseñar y aprender matemáticas y entrenar y ganar concursos).
El Cuadrado de Sócrates --y los triángulos notables
Voy a discutir en este post cuatro problemas de geometría básica que se resuelven de manera elemental invocando dos triángulos notables. Estos triángulos son el isósceles rectángulo (la mitad de un cuadrado) y el 30-60-90 (la mitad de un triángulo equilátero). En los dos problemas de inicio, la solución presentada invoca el isósceles rectángulo; en los otros dos se debe invocar la mitad de un equilátero.
Primer problema (el Cuadrado de Sócrates)
Dado el lado $\lambda$ de un cuadrado, construir el cuadrado del doble de área.
Solución
Problema 3 (IMO 2011)
Sea $f$ una función del conjunto de los números reales en sí mismo que satisface $$f(x + y)\leq yf(x) + f(f(x))$$ para todo par de números reales $x, y$. Demostrar que $f(x) = 0$ para todo $x\leq0$.
Problema 2 (IMO 2011)
Sea $S$ un conjunto finito de dos o más puntos del plano. En $S$ no hay tres puntos colineales. Un remolino es un proceso que empieza con una recta $l$ que pasa por un único punto $P$ de $S$. Se rota $l$ en el sentido de las manecillas del reloj con centro en $P$ hasta que la recta encuentre por primera vez otro punto de $S$ al cual llamaremos $Q$. Con $Q$ como nuevo centro se sigue rotando la recta en el sentido de las manecillas del reloj hasta que la recta encuentre otro punto de $S$. Este proceso continúa indefinidamente.
Problema 1(IMO 2011)
Para cualquier conjunto de cuatro enteros positivos distintos se denota la suma con
Problema 6 (IMO 2011)
Sea $ABC$ un triángulo acutángulo con circuncírculo $\Gamma$. Sea $l$ una tangente a $\Gamma$, y sean $l_a,l_b,l_c$ las rectas obtenidas de $l$ mediante reflexión en $BC,CA,AB$, respectivamente. Demostrar que el circuncírculo del triángulo determinado por las rectas $l_a,l_b,l_c$ es tangente al círculo $\Gamma$.
Problema 5 (IMO 2011)
Sea $f$ una función de los enteros a los enteros positivos. Suponga que, para cualesquiera dos enteros $m,n$, la diferencia $f(m)-f(n)$ es divisible entre $f(m-n)$. Demostrar que, para todos los enteros $m$ y $n$ con $f(m)\leq f(n)$, el número $f(n)$ es divisible entre $f(m)$.
Problema 4 (IMO 2011)
Sea $n>0$ un entero. Se tiene disponible una balanza y $n$ pesas de pesos $2^0,2^1,2^2,\ldots,2^{n-1}$. Debemos colocar cada una de las pesas en la balanza, una después de otra, de tal manera que el lado derecho nunca sea más pesado que el izquierdo. En cada paso elegimos una de las pesas que aún no ha sido colocada en la balanza, y la colocamos en alguno de los dos lados, hasta que todas las pesas han sido colocadas. Determinar el número de formas en que eso puede hacerse.
Olimpiada Internacional de Matemáticas 2011(problemas, día 1)
En el (extraordinariamente bien diseñado y administrado) sitio oficial (http://official.imo2011.nl/) se puede estar al tanto del desarrollo de esta importante competencia. El ambiente humano de la competencia se puede ver en http://www.youtube.com/imo2011. Ver también http://www.facebook.com/imo2011amsterdam
Les dejo las ligas a los problemas del primer día (lunes 18):