Publicaciones Recientes
Transformación de acutángulo a equilátero (en el circuncírculo de aquél)
Se dan los puntos $A, B, C$ sobre una circunferencia $K$ de manera que el triángulo $ABC$ sea acutángulo. Sea $P$ un punto interior a $K$. Se trazan las rectas $AP, BP, CP$, que cortan de nuevo a la circunferencia en $X, Y, Z$. Determinar el punto $P$ que hace equilátero al triángulo $XYZ$.
Tablero lampareado
En cada casilla de un tablero $n\times n$ hay una lámpara. Al ser tocada una lámpara, cambian de estado ella misma y todas las lámparas situadas en la fila y la columna que ella determina (las que están encendidas se apagan y las apagadas se encienden). Inicialmente todas están apagadas. Demostrar que siempre es posible, con una sucesión adecuada de toques, lograr que todo el tablero quede encendido y encontrar, en función de $n$, el número mínimo de toques para que se enciendan todas las lámparas.
Cuadrilátero inscriptible y circunscriptible
Dado un cuadrilátero inscrito en una circunferencia, sus vértices se denotan consecutivamente por $A, B, C, D$. Se supone que existe una semicircunferencia con centro en $AB$, tangente a los otros tres lados del cuadrilátero.
- i) Demostrar que $AB = AD + BC$.
- ii) Calcular, en función de $x = AB, y = CD$, el área máxima que puede alcanzar un cuadrilátero que satisface las condiciones del enunciado.
Números "sensatos"
Se dice que un número natural $n$ es "sensato" si existe un entero $r$, con $1 < r < n-1$, tal que la representación de $n$ en base $r$ tiene todas sus cifras iguales. Por ejemplo, 62 y 15 son sensatos, ya que 62 es 222 en base 5 y 15 es 33 en base 4. Demuestre que 1993 no es sensato pero 1994 si lo es.
Enteros "cuates"
Dos números enteros no negativos $a, b$ son "cuates" si $a + b$ tiene solamente ceros y unos en su expresión decimal. Sean $A$ y $B$ dos conjuntos infinitos de enteros no negativos tales que $B$ es el conjunto de todos los números que son "cuates" de todos los elementos de $A$ y $A$ es el conjunto de todos los números que son "cuates" de todos los elementos de $B$. Pruebe que en uno de los conjuntos $A$ o $B$ hay infinitos pares de números $x, y$ tales que $x - y = 1$.
Cardinalidad de un conjunto finito de puntos
Sean $P$ y $Q$ dos puntos distintos en el plano. Denotemos por $m (PQ)$ la mediatriz del segmento $PQ$. Sea $S$ un subconjunto finito del plano, con más de un elemento, que satisface las siguientes propiedades:
- a) Si $P$ y $Q$ están en $S$, entonces $m (PQ)$ intersecta a $S$.
- b) Si $P_1Q_1, P_2Q_2, P_3Q_3$ son tres segmentos diferentes cuyos extremos son puntos de $S$, entonces no existe ningún punto de $S$ en la intersección de las tres líneas $m(P_1Q_1), m(P_2Q_2),m(P_3Q_3$).
Determine el número de puntos que puede tener $S$.
Ejercicio trigonométrico
Sea $ABC$ un triángulo equilátero y $\Gamma$ su círculo inscrito. Si $D$ y $E$ son puntos de los lados $AB$ y $AC$, respectivamente, tales que $DE$ es tangente a $\Gamma$, demuestre que $$\frac{AD}{DB}+\frac{AE}{EC}=1$$
Una forma complicada de definir una función elemental
Sea $N^* = \{1, 2, 3, \ldots \}$. Halle todas las funciones $f: N^* \mapsto N^*$ tales que:
- i) si $x < y$, entonces $f(x) < f(y)$
- ii) $f(y f(x)) = x^2f(xy)$, para todos los $x, y\in N^*$.
¿Cómo se encierra un n-polígono en un paralelogramo?
Muestre que, para cualquier polígono convexo de área uno, existe un paralelogramo de área 2 que lo contiene.
Primos que son diferencia de capicúas consecutivos
Un número natural es capicúa si al escribirlo en notación decimal se puede leer de igual forma de izquierda a derecha y de derecha a izquierda. Ejemplos: 8, 23432, 6446. Sean $x_1 < x_2 < \ldots < x_i < x_{i+1} < ... $ todos los números capicúas. Para cada $i$ sea $y_i=x_{i+1} - x_i$. ¿Cuántos números primos distintos tiene el conjunto $\{y_1, y_2, y_3 \ldots \}$?