Publicaciones Recientes
Problema 5 (IMO 2011)
Sea $f$ una función de los enteros a los enteros positivos. Suponga que, para cualesquiera dos enteros $m,n$, la diferencia $f(m)-f(n)$ es divisible entre $f(m-n)$. Demostrar que, para todos los enteros $m$ y $n$ con $f(m)\leq f(n)$, el número $f(n)$ es divisible entre $f(m)$.
Problema 4 (IMO 2011)
Sea $n>0$ un entero. Se tiene disponible una balanza y $n$ pesas de pesos $2^0,2^1,2^2,\ldots,2^{n-1}$. Debemos colocar cada una de las pesas en la balanza, una después de otra, de tal manera que el lado derecho nunca sea más pesado que el izquierdo. En cada paso elegimos una de las pesas que aún no ha sido colocada en la balanza, y la colocamos en alguno de los dos lados, hasta que todas las pesas han sido colocadas. Determinar el número de formas en que eso puede hacerse.
Olimpiada Internacional de Matemáticas 2011(problemas, día 1)
En el (extraordinariamente bien diseñado y administrado) sitio oficial (http://official.imo2011.nl/) se puede estar al tanto del desarrollo de esta importante competencia. El ambiente humano de la competencia se puede ver en http://www.youtube.com/imo2011. Ver también http://www.facebook.com/imo2011amsterdam
Les dejo las ligas a los problemas del primer día (lunes 18):
Sobre la utilidad de saber trigonometría
Caracterización del ortocentro
Demostrar que un punto $P$ en el interior de un triángulo acutángulo $XYZ$ es el ortocentro de éste si y sólo si
- $XP$ es perpendicular a $YZ$, y
- el reflejo de $P$ en el lado $YZ$ pertenece al circuncírculo de $XYZ$.
Método de áreas (2a parte)
En este post voy a discutir el método de áreas en el problem solving de matemáticas de concurso. El tema ya lo había discutido (un poco de manera reticente) en el post Método de áreas. En esta ocasión voy a profundizar un poco más en ese método, presentando y demostrando un teorema --y algunas de sus instancias de uso.
Suma de razones de segmentos
Sea $P$ un punto interior del triángulo $ABC$. Los rayos $AP,BP,CP$ cortan los lados $BC,CA,AB$ en los puntos $D,E,F$, respectivamente. Demostrar que
Método de áreas (revisitado)
Sean dados dos segmentos $AB$ y $PQ$, y suponga que los segmentos o sus prolongaciones se cortan en el punto $M$. Demostrar que la razón de las áreas de los triángulos $ABP$ y $ABQ$ es igual a la razón de las distancias de $P$ a $M$ y de $Q$ a $M$.
Ejercicio clásico (con descubrimiento semiguiado)
Sea $D$ un punto en la base $BC$ de un triángulo, y consideremos los triángulos $ABD$ y $ACD$.
- Demostrar que la razón de sus áreas es igual a la razón de sus bases $BD$ y $CD$.
- Demostrar que si $D$ es el punto medio de $BC$ entonces sus áreas son iguales.
- Demostrar que si $D$ es el punto en que la bisectriz del ángulo $A$ corta a la base $BC$, entonces $AB/AC=BD/CD$ (teorema de la bisectriz).
Reflexión de pies de alturas (P6)
Sea $ABC$ un triángulo acutángulo y sean $D$, $E$ y $F$ los pies de las alturas desde $A$, $B$ y $C$, respectivamente. Sean $Y$ y $Z$ los pies de las perpendiculares desde $B$ y $C$ sobre $FD$ y $DE$, respectivamente. Sea $F_1$ la reflexión de $F$ con respecto a $E$ y $E_1$ reflexión de $E$ respecto a $F$. Si $3EF = FD+DE$ demuestra que $\angle BZF_1 = \angle CYE_1$.
Nota. La reflexión de un punto $P$ respecto a un punto $Q$ es el punto $P_1$ ubicado sobre la recta $PQ$ tal que $Q$ queda entre $P$ y $P_1$, y $PQ = QP_1$