Experto
Problema 6, IMO 2010
Sea $a_1, a_2, a_3, \ldots$ una sucesión de números reales positivos. Se tiene que para algún entero positivo $s$,
$$a_n = \textrm{max}\{a_k + a_{n-k} \textrm{ tal que } 1 \leq k \leq n - 1\}$$
para todo $n > s$. Demuestre que existen enteros positivos $\ell$ y $N$, con $\ell \leq s$, tales que $a_n = a_\ell + a_{n-\ell}$ para todo $n \geq N$.
Problema 3, IMO 2010
Sea $\mathbb{N}$ el conjunto de los enteros positivos. Determine todas las funciones $g : \mathbb{N} \to \mathbb{N}$ tales que $$\left( g(m) + n\right) \left(m + g(n) \right) $$
es un cuadrado perfecto para todo $m, n \in \mathbb{N}$.
Problema 5, IMO 2010
En cada una de las seis cajas $B_1,B_2,B_3,B_4,B_5,B_6$ hay inicialmente sólo una moneda. Se permiten dos tipos de operaciones:
- Tipo 1: Elegir una caja no vacía $B_j$ , con $1 \leq j \leq 5$. Retirar una moneda de $B_j$ y añadir dos monedas a $B_{j+1}$.
- Tipo 2: Elegir una caja no vacía $B_k$, con $1 \leq k \leq 4$. Retirar una moneda de $B_k$ e intercambiar los contenidos de las cajas (posiblemente vacías) $B_{k+1}$ y $B_{k+2}$.
Determine si existe una sucesión finita de estas operaciones que deja a las cajas $B_1,B_2,B_3,B_4,B_5$ vacías y a la caja $B_6$ con exactamente $2010^{2010^{2010}}$ monedas. (Observe que $a^{b^c} = a^{(b^c)}$.)
Problema 2, IMO 2010
Sea $ABC$ un triángulo, $I$ su incentro y $\Gamma$ su circunferencia circunscrita. La recta $AI$ corta de nuevo a $\Gamma$ en $D$. Sean $E$ un punto en el arco $\widehat{BDC}$ y $F$ un punto en el lado $BC$ tales que
$$\angle BAF = \angle CAE < \frac{1}{2} \angle BAC.$$
Sea $G$ el punto medio del segmento $IF$. Demuestre que las rectas $DG$ y $EI$ se cortan sobre $\Gamma$.
IMO 2009, Problema 5
Determinar todas las funciones f del conjunto de los enteros positivos en el conjunto de los enteros positivos tales que, para todos los enteros positivos a y b, existe un triángulo no degenerado cuyos lados miden
$$a, f(b) \textrm{ y } f(b + f(a) - 1)$$
(Un triángulo es no degenerado si sus vértices no están alineados).
IMO 2009, Problema 3
Sea $s_1, s_2, s_3, \ldots $ una sucesión estrictamente creciente de enteros positivos tal que las
subsucesiones
$$s_{s_1} , s_{s_2} , s_{s_3} ,\ldots \textrm{ y } s_{s_1+1}, s_{s_2+1}, s_{s_3+1}, \ldots $$
son ambas progresiones aritméticas. Demostrar que la sucesión $s_1, s_2, s_3, . . .$ es también una progresión
Problema 8(G)
En un triángulo $ ABC $, el ángulo $ A $ mide el doble que el $ C $. Se traza la mediana $BD$ al lado $CA$ ($D$ es punto medio de $ CA $). Si el ángulo $ DBC $ es igual al ángulo en $ A $, calcular las medidas de los ángulos del triángulo $ ABC $.
Producto de diagonales en un polígono regular
Sea $A_1, A_2, \dots, A_n$ los $ n $ vértices de un polígono regular con circunferencia circuncrita de radio $R$, Demuestra que:
Isósceles semejantes sobre un triángulo
Consideremos $A'$, $B'$ y $C'$ tres puntos en el exterior del triángulo $ ABC $, de tal manera que los triángulos $ A'BC $, $ AB'C $ y $ ABC' $ son todos isósceles semejantes y de bases BC, CA y AB respectivamente, Demuestra que $AA'$, $BB'$ y $CC'$ concurren.
Problema de Excalibur Probleam Corner 309
En un triángulo acutángulo ABC donde AB < AC. Sea H el pie de la perpendicular de A sobre BC y M el punto medio de AH. Sea D el punto de tangencia del incirculo del triangulo ABC en BC. La linea DM intersecta por segunda vez al incirculo en N. Probar que los angulos BND y CND son iguales.