Problemas - Álgebra

Problema

Medias enteras

Enviado por jmd el 11 de Enero de 2012 - 20:43.

Las medias aritmética, geométrica y armónica de dos enteros positivos distintos son todas números enteros. Hallar el menor valor posible de la media aritmética de los dos enteros.

Problema

Sucesión en enteros indecisa

Enviado por jmd el 11 de Enero de 2012 - 20:31.

Decidir si existen enteros positivos $a$ y $b$ tales que todos los términos de la sucesión $(X_n)$, definida como $X_1 =2010, X_2 = 2011$, $$X_{n+2} = X_n + X_{n+1} + a\sqrt{X_nX_{n+1} + b}$$ son números enteros.

Problema

Ecuación sin soluciones enteras

Enviado por jmd el 10 de Enero de 2012 - 16:09.

Pruebe que la ecuación $$x^{2008}+2008!=21^y$$ no tiene soluciones enteras $(x,y)$

Problema

Suma de max-min diferencias

Enviado por jmd el 10 de Enero de 2012 - 16:04.

Considere los números $1,2,3,\ldots,2008^2$ distribuidos en un tablero de $2008\times 2008$, de modo que en cada casilla haya un número distinto. Para cada fila y cada columna del tablero se calcula la diferencia entre el mayor y el menor de sus elementos. Sea $S$ la suma de los 4016 números obtenidos. Determine el mayor valor posible de $S$.

Problema

Sucesión con primer entero en la posición 2007

Enviado por jmd el 10 de Enero de 2012 - 09:23.

Dado un entero positivo $m$, se define la sucesión $\{a_n\}_{n\geq 1}$ de la siguiente manera: $$a_1 = m/2,a_{n+1}=a_n\lceil a_n \rceil $$ Determinar todos los valores de $m$ para los cuales $a_{2007}$ es el primer entero que aparece en la sucesión.
Nota: Para un número real $x$ se define $\lceil x \rceil$ como el menor entero que es mayor o igual a $x$. Por ejemplo, $\lceil \pi \rceil = 4, \lceil 2007 \rceil = 2007$.

Problema

Suma de diferencias

Enviado por jmd el 9 de Enero de 2012 - 23:01.

Se consideran $n$ números reales $a_1,a_2,\ldots,a_n$ no necesariamente distintos. Sea $d$ la diferencia entre el mayor y el menor de ellos y sea $$s= \sum_{i\lt j}|a_i-a_j|$$ Demuestre que $(n-1)d\leq s\leq n^2d/4$ y determine las condiciones que deben cumplir estos $n$ números para que se verifique cada una de las igualdades.

Problema

Sistema de ecuaciones

Enviado por jmd el 9 de Enero de 2012 - 22:30.

Determine todas las ternas de números reales $(x, y, z)$ que satisfacen el siguiente
sistema de ecuaciones:
$$xyz = 8,$$
$$x^2y + y^2z + z^2x = 73,$$
$$x(y - z)^2 + y(z - x)^2 + z(x - y)^2 = 98.$$

Problema

Punto de corte de un conjunto de puntos

Enviado por jmd el 6 de Enero de 2012 - 21:23.

Para un conjunto $H$ de puntos en el plano, se dice que un punto $P$ del plano es un punto de corte de $H$ si existen cuatro puntos distintos $A, B, C, D$ en $H$ tales que las rectas $AB$ y $CD$ son distintas y se cortan en $P$. 

Dado un conjunto finito $A_0$ de puntos en el plano, se construye una sucesión de conjuntos $A_1, A_2, A_3,\ldots$ de la siguiente manera: para cualquier $j\geq 0$ , $A_{j+1}$ es la unión de $A_j$ con el conjunto de todos los puntos de corte de $A_j$.

Demostrar que si la unión de todos los conjuntos de la sucesión es un conjunto finito,
entonces para cualquier $j\geq 1$ se tiene que $A_j = A_1$.

Problema

Ningún término es múltiplo de 2003

Enviado por jmd el 6 de Enero de 2012 - 21:01.

Se definen las sucesiones $(a_n)_{n\geq 0} , (b_n)_{n\geq 0}$ de la siguiente manera:
$$a_0 =1 , b_0 = 4$$ y, para toda $n\geq 0$, $$a_{n+1}=a_n^{2001}+b_n, b_{n+1}=b_n^{2001}+a_n$$ Demuestre que 2003 no divide a ninguno de los términos de estas sucesiones.

Problema

Inferencias a partir de datos incompletos

Enviado por jmd el 6 de Enero de 2012 - 20:51.

Pablo estaba copiando el siguiente problema: 

Considere todas las sucesiones de 2004 números reales $(x_0,x_1,x_2,\ldots,x_{2003}),$  tales que \begin{eqnarray}
x_0 &=&1\\ 0\leq& x_1&\leq 2x_0,\\ 0\leq &x_2&\leq 2x_1,\\
&\vdots&\\ 0\leq &x_{2003}&\leq 2x_{2002}.\end{eqnarray}
Entre todas estas sucesiones, determine aquella para la cual la siguiente
expresión toma su mayor valor: $S =\ldots$.