Combinatoria
Pichoneras de nacionalidad, edad y sexo
En una reunión hay 201 personas de 5 nacionalidades diferentes. Se sabe que, en cada grupo de 6, al menos dos tienen la misma edad. Demostrar que hay al menos 5 personas del mismo país, de la misma edad y del mismo sexo.
Coloreo de triángulos con fichas
Tres fichas A,B,C están situadas una en cada vértice de un triángulo equilátero de lado n. Se ha dividido el triángulo en triangulitos equiláteros de lado 1, tal como muestra la figura en el caso n=3.
Inicialmente todas las líneas de la figura están pintadas de azul. Las fichas se desplazan por las líneas, pintando de rojo su trayectoria, de acuerdo con las dos reglas siguientes:
Método para distribuir ceros y unos en un tablero
Tenemos un tablero cuadriculado de k2−k+1 filas y k2−k+1 columnas, donde k=p+1 y p es un número primo. Para cada primo p, dé un método para distribuir números entre 0 y 1, un número en cada casilla del tablero, de modo que en cada fila haya exactamente k números 0 en cada columna haya exactamente k números 0 y además no haya ningún rectángulo de lados paralelos a los lados del tablero con números 0 en sus cuatro vértices.
Cubo formado por 1996 cubos
Sea n un número natural. Un cubo de arista n puede ser dividido en 1996 cubos cuyas aristas son también números naturales. Determine el menor valor posible de n.
Dominio eficiente de un tablero
En un tablero de m×m casillas se colocan fichas. Cada ficha colocada en el tablero "domina" todas las casillas de la fila (--), la columna (|) y la diagonal (\), a la que pertenece. Determine el menor número de fichas que deben colocarse para que queden "dominadas" todas las casillas del tablero. Nota: la ficha no "domina" la diagonal (/).
Tablero lampareado
En cada casilla de un tablero n×n hay una lámpara. Al ser tocada una lámpara, cambian de estado ella misma y todas las lámparas situadas en la fila y la columna que ella determina (las que están encendidas se apagan y las apagadas se encienden). Inicialmente todas están apagadas. Demostrar que siempre es posible, con una sucesión adecuada de toques, lograr que todo el tablero quede encendido y encontrar, en función de n, el número mínimo de toques para que se enciendan todas las lámparas.
Combinatoria con números de 3 cifras distintas elegidas de entre 5
Encontrar un número N de cinco cifras diferentes y no nulas, que sea igual a la suma de todos los números de tres cifras distintas que se pueden formar con las cinco cifras de N.
Sumas de 14 más menos unos
A cada vértice de un cubo se asigna el valor de +1 o -1, y a cada cara el producto de los valores asignados a cada vértice. ¿Qué valores puede tomar la suma de los 14 números así obtenidos?
Recorridos en un tablero
Sean A y B vértices opuestos de un tablero cuadriculado de n por n casillas (n≥1), a cada una de las cuales se añade su diagonal de dirección AB, formándose así 2n2 triángulos iguales. Se mueve una ficha recorriendo un camino que va desde A hasta B formado por segmentos del tablero, y se coloca, cada vez que se recorre, una semilla en cada uno de los triángulos que admite ese segmento como lado.
IMO 2007 (PROBLEMA 6)
Sea un entero positivo. Se considera
