Combinatoria

Problema

P2 OMM 1992. Cuartetas y múltiplos de un primo

Enviado por jmd el 9 de Julio de 2010 - 09:47.

Sea p un número primo, diga cuántas cuartetas distintas (a,b,c,d) existen, con a, b, c y d enteros y 0a,b,c,dp1, tales que adbc sea múltiplo de p.

Problema

P1. OMM 1990. Paseos en una cuadrícula

Enviado por jmd el 7 de Julio de 2010 - 02:12.

Encuentre el total de caminos que hay del punto A a línea l en la red de la siguiente figura, si en un camino solo está permitido ir hacia la izquierda.

Problema

P6. OMM 1989. Trayectorias en retícula triangular

Enviado por jmd el 6 de Julio de 2010 - 11:25.

Siguiendo las líneas de la figura ¿Cuántos caminos hay para ir del punto A al punto B que no pasen dos veces por el mismo punto y que solo avancen hacia abajo y hacia los lados pero no hacia arriba?
 


 

Problema

P7. OMM 1988. Subconjuntos ajenos de {1,2,...,m}

Enviado por jmd el 5 de Julio de 2010 - 19:18.

Si A y B son subconjuntos ajenos del conjunto {1,2,,m} y la suma de los elementos de A es igual a la suma de los elementos de B, pruebe que el número de elementos de A y también de B es menor que m/2
 

Problema

P4. OMM 1988. Ocho enteros entre uno y ocho

Enviado por jmd el 5 de Julio de 2010 - 19:07.

¿Cuántas maneras hay de escoger ocho enteros a1,a2,a3,,a8 no necesariamente distintos, tales que 1a1a88?
 

Problema

Embaldosado de un patio

Enviado por jmd el 25 de Junio de 2010 - 11:28.

Se desea embaldosar un patio cuadrado de lado N entero positivo. Se dispone de dos tipos de baldosas: cuadradas de 5×5, y rectangulares de 1×3. Determine los valores de N para los cuales es posible hacerlo. Nota: el patio debe quedar completamente cubierto sin que las baldosas se sobrepongan.

Problema

Mover una ficha en un tablero

Enviado por jmd el 25 de Junio de 2010 - 11:26.

Un jugador coloca una ficha en una casilla de un tablero m\timesn dividido en cuadrados de tamaño 1×1. El jugador mueve la ficha de acuerdo a las siguientes reglas:

  • En cada movida, el jugador mueve la ficha a un cuadrado que comparte un lado  con el cuadrado en que se encuentra.
  • El jugador no puede mover la ficha a un cuadrado que ha ocupado previamente.
  • Dos movimientos consecutivos no pueden tener la misma dirección.

El juego termina cuando el jugador no puede mover la ficha. Determine todos los valores de m y n tales que, al colocar la ficha en algún cuadrado, todos los cuadrados pueden ser ocupados durante el juego.

 

Problema

No podrían saludar sólo a uno

Enviado por jmd el 18 de Junio de 2010 - 12:13.

Cada uno de los 61 competidores en el concurso estatal saludó de mano al menos a otro competidor. Demostrar que alguno de ellos saludó de mano al menos a dos competidores.

Problema

Problema 2

Enviado por sadhiperez el 29 de Mayo de 2010 - 21:46.

Sea S el conjunto de puntos (i,j) de coordenadas enteras en el plano, con i,j=0,1,2,...,9.

 
a) ¿De cuántas formas se pueden elegir cuatro puntos de S de manera que formen un cuadrado con lados paralelos a los ejes de coordenadas?
 
b) ¿De cuántas formas se pueden elegir cuatro puntos en S de manera que formen un cuadrado?
 
Problema

Coloración de vertices

Enviado por JoseMP el 24 de Mayo de 2010 - 19:47.

Demuestra que una gráfica G es bipartita si y sólo si su número cromático χ(G) es 2.

Distribuir contenido