Problemas - Teoría de números

Problema

¿Es múltiplo de 11? (Que lo diga Fermat.)

Enviado por jmd el 28 de Agosto de 2009 - 07:25.

Decidir --con prueba-- si $61^{61}+71^{71}$ es divisible entre 11.

Problema

ExSel2_Pr1: Inclusión y exclusión... pero basta con razonarlo

Enviado por jmd el 28 de Agosto de 2009 - 07:01.

¿Cuántos números enteros positivos no mayores que 1000 no son ni cuadrados ni cubos?

Problema

Elemental,... pero sólo si sabes usar el PTF

Enviado por jmd el 24 de Agosto de 2009 - 06:19.

 Encontrar todos los primos $q$ tales que $4+2^q$ es múltiplo de $2q.$

Problema

Los primos no se factorizan... excepto en la forma 1( p )

Enviado por jmd el 21 de Agosto de 2009 - 09:58.

Encontrar todos los enteros positivos n tales que $n^{20}+n^{10}+1$ es un primo.

Problema

Otro de puros 1´s

Enviado por arbiter-117 el 18 de Agosto de 2009 - 18:40.

 Demostrar que todo primo impar n excepto el 5 divide a algun numero de la forma $111...11$ ($k$ digitos, todos unos).

Problema

P divide a una sumota

Enviado por arbiter-117 el 18 de Agosto de 2009 - 18:33.

Sea $p$ un número primo. Encontrar la condición que debe cumplir n para que $1+n+n^2+....+n^{p-2}$ es múltiplo de $p$.

 

 

 

Problema

Encontrar k...

Enviado por Luis Brandon el 18 de Agosto de 2009 - 12:08.

Determina si existen infinitos enteros $ k $, que cumplen que para cualquier primo $ p $, el numero $p^2+k$ siempre es compuesto.

Por ejemplo si tomamos $k=2$, para $p=2$ dicho numero es compuesto pero para $p=3$ no lo es...

Problema

División en casos

Enviado por jmd el 16 de Agosto de 2009 - 18:30.

Encontrar todas las tripletas $(p,q,r)$ de números primos tales que $p^q+p^r$ es un cuadrado perfecto.

Problema

Criba modular

Enviado por jmd el 16 de Agosto de 2009 - 07:29.

Encontrar todas las soluciones $(x,y)$  en enteros positivos para la ecuación $7^x-3\cdot 2^y=1.$
 

Problema

Múltiplo de 11 compuesto de unos

Enviado por jmd el 15 de Agosto de 2009 - 06:02.

Sea $p$ un un entero positivo. El número $11p$ está compuesto de $m$ dígitos todos iguales a 1. Encontrar todos los valores de $m$ para los cuales $p$ es primo.