Problemas - Teoría de números
suma de divisores
Demuestre que hay una infinidad de enteros positivos $ n $ tales que la suma de los divisores positivos del número $2008^n-1$ es divisible entre $ n $.
Un sistema diofantino irracional
Determine todas las parejas $(x,y)$ de enteros positivos, tales que $x+y=a^n$ y $x^2+y^2=a^m$ para algunos enteros positivos $a, m, n.$
metodo chino del resto y ptf
Sea $f(n)=5n^{13}+13n^5+9an$. Encontrar el mínimo entero positivo$ a $ para el cual $f(n)$ es divisible entre $65$ para cada entero $ n $.
Método del residuo chino
Una compañía de n soldados es tal que:
– n es un número capicúa. (Se lee igual al derecho y al revés. Ejemplo:15651, 9436349.) – Si los soldados se forman de 3 en 3, quedan 2 soldados en la última fila; de 4 en 4, quedan 3 soldados en la última fila; de 5 en 5, quedan 5 soldados en la última fila.
Hallar el menor n que cumple las condiciones y demostrar que hay una infinidad de valores n que las satisfacen.
sobre consecutivos y cuadrados perfectos
Demostrar que el producto de 4 enteros consecutivos, sumándole 1, siempre es un cuadrado perfecto.
Sobre primos y cuadrados perfectos
Encontrar todos los primos p < q < r tales que
-
25pq + r = 2004 y
-
pqr + 1 es cuadrado perfecto.
Una progresion aritmetica de cuadrados
Demostrar que tres cuadrados perfectos en progresión aritmética tienen una diferencia constante que es múltiplo de 24.(En otras palabras, si $c^2 - b^2 = b^2 - a^2 = d$, entonces $ d $ es múltiplo de 24.)
Cuadrado perfecto y Factorial
Demostrar que $n! + 2004$ no es cuadrado perfecto para ningún entero positivo $ n $.
IMO 2008 (Problema 3)
Demuestra que existen infinitos enteros n tales que n2 + 1 tiene un divisor primo mayor que $2n+\sqrt{2n}$.
Cuadrado perfecto
Encontrar todos los enteros positivos de cuatro cifras que son cuadrados perfectos y tales que son de la forma aabb, es decir, las primeras dos cifras se repiten así como las dos últimas.