Problemas - Teoría de números

Problema

P6. Borrando números del pizarrón

Enviado por jesus el 26 de Junio de 2023 - 14:35.

Alka encuentra escrito en un pizarrón un número $n$ que termina en 5. Realiza una secuencia de operaciones con el número en el pizarrón. En cada paso decide realizar una de las dos operaciones siguientes:

  1. Borrar el número escrito $m$ y escribir su cubo $m^3$.
  2. Borrar el número escrito $m$ y escribir el producto $2023\cdot m$

Alka realiza cada una de las operaciones un número par de veces en algún orden y al menos una vez, y obtiene finalmente el número $r$. Si las cifras de las decenas de $r$ es un número impar, encuentra todos los valores posibles que la cifra de las decenas de $n^3$ pudo haber tenido.

Problema

P3. Un país llamado Máxico

Enviado por jesus el 19 de Junio de 2023 - 18:16.

Un país llamado Máxico tiene dos islas, la isla Mayor y la isla Menor. La isla Mayor está compuesta por $k>3$ estados con exactamente $n>3$ ciudades cada uno, de manera que tiene $kn$ ciudades en total. La isla Menor tiene sólo un estado que tiene 31 ciudades en total. Dos aerolíneas de alto renombre, Aeropapantla y Aerocenzontle, ofrecen vuelos alrededor de Máxico. Aeropapantla ofrece vuelos directos desde cualquier ciudad hasta cualquier otra ciudad de Máxico. Aerocenzontle solo ofrece vuelos directos desde cualquier ciudad de la isla Mayor a cualquier otra ciudad de la isla Mayor.

Problema

P1. Enciclopedia de Gabriela

Enviado por jesus el 19 de Junio de 2023 - 17:32.
Gabriela encontró una enciclopedia de 2023 páginas, numeradas del 1 al 2023. Notó que las páginas cuyo número está formado por únicamente dígitos pares tienen una marca azul. También notó que cada 3 páginas hay una marca roja y que la primera marca roja está en la página 2. ¿Cuántas páginas de la enciclopedia están marcadas con ambos colores?
Problema

5.- Borrando divisores de un pizarrón

Enviado por Samuel Elias el 21 de Noviembre de 2022 - 13:42.

Sea $n > 1$ un entero positivo y sean $d_1 < d_2 < ... < d_m$ sus $m$ enteros positivos de manera que $d_1 = 1$ y $d_m = n$. Lalo escribe los siguientes $2m$ números en un pizarrón:

$d_1 , d_2 , ... , d_m , d_1 + d_2 , d_2 + d_3 , ... , d_{m-1} + d_m , N$

donde $N$ es un entero positivo. Después Lalo borra los números repetidos (por ejemplo, si un número repetido aparece 2 veces, el borrará uno de los dos). Después de esto, Lalo nota que los números en el pizarrón son precisamente la lista completa de divisores positivos de $N$. Encuentra todos los posibles valores del entero positivo $n$.

Problema

3.- Orquesta Matemática

Enviado por jesus el 18 de Noviembre de 2022 - 10:52.

Sea $n>1$ un entero y sea $d_1 < d_2 < \dots < d_m$ la lista completa de sus divisiores positivos, incluidos $1$ y $n$. Los $m$ instrumentos de una orquesta matemática se disponen a tocar una pieza musical de $m$ segundos, donde el instrumento $i$ tocará una nota de tono $d_i$ durante $s_i$ segundos (no necesariamente consecutivos), donde $d_i$ y $s_i$ son enteros positivos. Decimos que esta pieza tiene sonoridad $S = s_1 + s_2 + \cdots + s_m $.

Problema

1.- Números Tlahuicas

Enviado por Samuel Elias el 12 de Noviembre de 2022 - 21:31.

Un número $x$ es Tlahuica si existen números primos distintos $p_1, p_2 \dots, p_k$ tales que

$$x= \frac{1}{p_1} + \frac{1}{p_2} + ... + \frac{1}{p_k}$$

Determina el mayor número Tlahuica que satisface las dos propiedades siguientes:

  1. 0 < < 1
  2. existe un número entero $0 < m \leq 2022$ tal que $mx$ es un entero.

Problema

Sin miedo al factorial

Enviado por Samuel Elias el 24 de Octubre de 2022 - 07:53.

Determina el menor entero positivo n tal que para todo entero positivo u se cumple que  n + u!  sea un número de al menos 4 divisores

Problema

Múltiplos de 9 con restricciones

Enviado por Samuel Elias el 24 de Octubre de 2022 - 07:37.

¿Cuántos múltiplos de 9 menores que 1000 no usan ningún digito menor que 3?

Problema

Problema 5 Estatal 2022

Enviado por Samuel Elias el 23 de Octubre de 2022 - 17:21.

Encuentra todas las parejas de enteros positivos (x,n) tales que:

(3)(2x) + 4 = n2

Problema

El 3 del estatal 2022

Enviado por Samuel Elias el 23 de Octubre de 2022 - 17:15.

Encuentra todos los valores para de tal forma que la expresión 

6n+1

sea un número con todos sus dígitos iguales.