Problemas - Teoría de números

Problema

Fermat converso (en general, espurio)

Enviado por jmd el 20 de Mayo de 2009 - 22:19.

Demostrar que si $p, q$ son dos primos distintos para los cuales $a^p\equiv a \pmod{q}$ y $a^q\equiv{a} \pmod{p}$, entonces $a^{pq} \equiv a \pmod{pq}$. }

Demostrar, con este resultado, el siguiente contraejemplo para la conversa del pequeño teorema de Fermat: $2^{340} \equiv 1 \pmod{341}$ --¡pero 341 es compuesto!

Problema

Partición de un conjunto

Enviado por jmd el 19 de Mayo de 2009 - 17:00.

Encontrar todos los enteros positivos $ n $ para los cuales el conjunto $A= \{n, n+1, n+2, n+3, n+4, n+5\}$ puede particionarse en dos subconjuntos con el mismo producto de sus miembros (el producto de los números en uno de los subconjuntos es igual al producto de los números en el otro).
 

Problema

Residuo de un factorial (módulo un primo)

Enviado por jmd el 19 de Mayo de 2009 - 11:02.

Encontrar el residuo que deja 50(50!) al dividirlo entre 53.

Problema

Inverso (mod 151) de una potencia de 2

Enviado por jmd el 19 de Mayo de 2009 - 10:21.

Encontrar un número entero positivo que al multiplicarlo por $2^{145}$ y al resultado restarle 1, se obtenga un múltiplo de 151.

Problema

Expresable como combinación lineal

Enviado por jmd el 19 de Mayo de 2009 - 09:41.

Decidir (con justificación) cuál de los tres números $2007, 2008, 2009$ podría ser expresado como una combinación lineal entera de 453 y 408, es decir, en la forma $453x+408y$, con $x, y$ enteros.
 

Problema

Encontrar un residuo

Enviado por jmd el 19 de Mayo de 2009 - 09:20.

Encontrar el residuo que deja $2009^{2008}$ al dividirlo entre $9$

Problema

Clasificación de primos que dividen a un cuadrado más uno

Enviado por jesus el 16 de Mayo de 2009 - 23:19.

Demuestra que si $ p$ es un primo impar que divide a $n^2 +1$ para algún $ n$, entonces $ p$ debe ser de la forma $4k+1$, es decir, $p \equiv 1$ (mód  4).

Problema

No es un cuadrado perfecto

Enviado por Fernando Mtz. G. el 15 de Mayo de 2009 - 05:31.

Demostrar que si $y$ es un entero, $187y-1$ no es un cuadrado perfecto.

Problema

División anular

Enviado por jmd el 14 de Mayo de 2009 - 10:29.

Sean $a, b, c$ tres números enteros positivos tales que $a$ divide a $b^2$, $b$ divide a $c^2$ y $c$ divide a $a^2$. Demostrar que $abc$ divide a $a^7+b^7+c^7$.
 

Problema

Una factorización notable (en la IMO 69)

Enviado por jmd el 11 de Mayo de 2009 - 12:07.

Demuestre que existen infinitos $ m $ enteros positivos tales que $n^4 + m$ es un número compuesto para cualquier $ n $ entero positivo.