Problemas - Teoría de números

Problema

Problema 5

Enviado por Roberto Alain R... el 8 de Junio de 2015 - 23:24.

Ana tiene un número secreto de 6 dígitos con las siguientes características:

  • Clave 1: Es el mismo número al leerlo si se lee de derecha a izquierda.
  • Clave 2: Es múltiplo de 9.
  • Clave 3: Si se eliminan los dígitos extremos (el primero y el último) el número que resulta es múltiplo de 11 y solamente del 11.

¿Cuál es el número secreto de Ana?

Problema

Máximo común divisor menor a n

Enviado por German Puga el 18 de Abril de 2015 - 19:48.

Sean m enteros mayores a 1, y sean $a_1,a_2,\dots,a_m$ enteros positivos menores o iguales a $n^m$. Demuestra que existen enteros positivos $b_1,b_2,\dots,b_m$ menores o iguales a n, tales que $$ mcd( a_1+b_1,a_2+b_2,\dots,a_m+b_m) < n,$$ donde $mcd(x_1,x_2,\dots,x_m)$ denota el máximo común divisor de $x_1,x_2,\dots,x_m$.

Problema

XXVIII OMM Problema 6

Enviado por vmp el 11 de Noviembre de 2014 - 11:07.

Para cada entero positivo $n$, sea $d(n)$ la cantidad de divisores positivos de $n$. Por ejemplo, los divisores positivos de 6 son 1, 2, 3 y 6, por lo que $d(6)=4$.
Encuentra todos los enteros positivos $n$ tales que
$$n+d(n)=d(n)^2$$.
 

Problema

Reducción de números

Enviado por vmp el 10 de Noviembre de 2014 - 17:09.

Un entero positivo $a$ se reduce a un entero positivo $b$, si al dividir $a$ entre su dígito de las unidades se obtiene $b$. Por ejemplo, 2015 se reduce a $\frac{2015}{5}=403$. Encuentra todos los enteros positivos que, mediante algunas reducciones, llegan al número 1. Por ejemplo, el número 12 es uno de tales enteros pues 12 se reduce a 6 y 6 se reduce a 1.

Problema

Todos los primos tales que...

Enviado por jmd el 3 de Septiembre de 2014 - 12:49.

Encontrar todos los números primos $p,q$ tales que $p$ divide a $q+6$ y $q$ divide a $p+7$.

Problema

P1. IMO 2014 - Sucesión Inifinita

Enviado por jesus el 9 de Julio de 2014 - 10:08.

Sea $a_0<a_1< a_2 < \cdots $ una sucesión infinita de números enteros positivos. Demostrar que existe un único entero $n \geq 1$ tal que $$a_n < \frac{a_0+a_1 + \cdots + a_n}{n} \leq a_{n+1}$$

Problema

Números divertidos

Enviado por jmd el 16 de Junio de 2014 - 16:37.

Un entero positivo n es divertido si para todo divisor positivo d de n, d+2 es un número primo. Encuentre todos los npumeros divertidos que tengan la mayor cantidad posible de divisores.

Problema

1,5,13,25...

Enviado por Paola Ramírez el 13 de Junio de 2014 - 03:40.

Con cuadrados de lado 1 se forma en cada etapa una figura en forma de escalera siguiendo el patron del dibujo 

Por ejemplo, la primera etapa utiliza un cuadrado, la segunda utiliza 5. Determine la última etapa para la cual la figura correspondiente utiliza menos de 2014 cuadrados.

Problema

Números "tico"

Enviado por Paola Ramírez el 13 de Junio de 2014 - 03:06.

Un entero positivo se denomina tico si es el producto de tres números primos diferentes que suman 74. Verifique que 2014 es tico. ¿Cuál será el próximo año tico? ¿Cuál será el último año tico de la historia?

Problema

r,r+p,r+2p primos , r=?

Enviado por jmd el 1 de Junio de 2014 - 07:02.

3.N. Encontrar todos los números primos que pueden escribirse como la diferenciade dos primos y como la suma de dos primos. (Nota: el 1 no es primo.)