Problemas - Teoría de números

Problema

Números norteños

Enviado por German Puga el 29 de Octubre de 2016 - 13:24.

Un entero positivo $N$ es norteño si para cada dígito $d >0$, existe un divisor de $N$ cuyo último dígito es $d$. ¿Cuántos números norteños menores que 2016 hay que tengan la menor cantidad posible de divisores?

Problema

Suma de cubos igual a 2016

Enviado por German Puga el 17 de Septiembre de 2016 - 15:33.

Determina si existen alguna terna de enteros no negativos, no necesariamente distintos, $(a,b,c)$ tales que:

$$a^3 + b^3 + c^3 =2016$$ 

Problema

$n$ y $n^2$ con misma terminación. Selectivo 2016

Enviado por Orlandocho el 28 de Agosto de 2016 - 12:59.

Encuentra todos los números naturales $n$ de tres dígitos que son iguales al número formado por los tres últimos dígitos de $n^2$.

Problema

Problema 4 - IMO 2016 - Conjunto de enteros fragantes

Enviado por jesus el 12 de Julio de 2016 - 21:42.

Un conjunto de números enteros positivos se llama fragante si tiene al menos dos elementos, y cada uno de sus elementos tiene algún factor primo en común con al menos uno de elementos restantes. Sea $P(n) = n^2 + n + 1$.  Determinar el menor número entero positivo $b$ para el cual existe algún número entero no negativo $a$ tal que el conjunto $$\{P(a+1), P(a+2), \dots,  P(a + b)\}$$ es fragante.

Problema

Problema 3 - IMO 2016 - Área de un polígono cíclico de coordenadas enteras.

Enviado por jesus el 11 de Julio de 2016 - 14:06.

Sea $P=A_1A_2 \dots A_k$ un polígono convexo en el plano. Los vértices $A_1, A_2, \dots, A_k $ tienen coordenadas enteras y están sobre un círculo. Sea $\mathcal{S}$ el área de $P$. Los cuadrados de las los lados de $P$ son todos divisibles por un entero dado $n$. Demuestra que $2\mathcal{S}$ es divisible por $n$,

Traducido del inglés.

Problema

Las monedas de Ingrid

Enviado por German Puga el 3 de Julio de 2016 - 12:52.
Ingrid donará $N$ monedas de oro en el año a dos fundaciones protectoras de animales, llamadas $A$ y $B$. Al principio todas las monedas las destinará a $A$. Cada día observa si la cantidad de monedas que tiene $A$ en ese momento es múltiplo de la cantidad de días transcurridos desde que inició la donación, de cumplirse eso, pasa una moneda de $A$ a $B$. El reparto termina cuando la cantidad de días transcurridos es más que la mitad de monedas que tenga $A$.
Problema

Números chidos

Enviado por German Puga el 3 de Junio de 2016 - 17:23.

Un número de tres cifras $abc$ es chido si:

  • Todas sus cifras son distintas y mayores a uno.
  • Las fracciones $ \frac{bc}{a}, \frac{ac}{b} $ y $ \frac{ba}{c}$ son enteros.

a) ¿Cuál es el número chido más grande? 

b) ¿Qué números chidos tienen la misma cifra en las centenas que el número encontrado en el inciso anterior?

Problema

El capicúa más cercano

Enviado por German Puga el 3 de Junio de 2016 - 17:16.

Una sucesión de números mayores que 0 comienza  con cualquier número y el siguiente será la resta entre el número anterior  y el número capicúa más cercano que sea menor o igual al número. Por ejemplo $$ 2016 \rightarrow 14 \rightarrow 3 \rightarrow 0$$ Se observa que 14=2016 - 2002 ;  3 = 14 - 11 y  0 = 3 - 3. La sucesión termina cuando se llega a cero, en el ejemplo la sucesión tuvo cuatro términos ¿Cuál es el número más pequeño con el que puede iniciar la sucesión para que tenga exactamente 5 términos?

Problema

¿Cuántos soluciones serán?

Enviado por Paola Ramírez el 7 de Mayo de 2016 - 01:29.

Encuentra todos los enteros no negativos $a$ y $b$ que satisfacen la ecuación $3\cdot 2^a+1=b^2.$

Problema

Ni primo ni cuadrado

Enviado por German Puga el 28 de Abril de 2016 - 21:34.

Muestra que el número $5n+3$ no es un cuadrado perfecto, con n entero positivo y que si $2n+1$ y $3n+1$ son ambos cuadrados, entonces $5n+3$ no es primo.