Publicaciones Recientes
P2. Divisores consecutivos
Determina todas las parejas de enteros (a,b) que satisfacen:
- 5≤b<a
- Existe un número natural n tal que los números ab y a−b son divisores consecutivos de n, en ese orden. Es decir, que no existe un divisor d de n tal que ab<d<a−b
P1. Rompecabezas especial
En la figura se, se muestran las 6 maneras distintas en que se puede colorear un cuadrado de 1×1 subdividido en 4 cuadritos de 12×12 con cuatro colores distintos (dos coloreados se consideran iguales si es posible rotar uno para obtener el otro). Cada uno de estos cuadrados de 1×1 se usará como pieza de un rompecabezas. Las piezas se pueden rotar, pero no reflejar. Dos piezas encajan si al unirlas por un lado completo, los cuadritos de 12×12 a ambos lados del lado por el que se unen son del mismo color (ver ejemplos). ¿Es posible armar un rompecabezas de 3×2 utilizando cada pieza exactamente una vez y de forma que todas las piezas adyacentes encajen?
Resultados XXXVIII OMM
Hola. Les escribo desde mi casa, pero ahora mi casa de CDMX. A partir de este año, como algunos ya sabrán, a los nacionales que vaya iré como codelegado (aunque este fui de visitante XD). No pude estar presente toda la semana por motivos escolares, pero ahí anduve.
Tenemos noticias buenas y malas. La mala, y la única, es que Tamaulipas quedó en lugar 26. Igualmente nadie debe sentirse mal por ese resultado, este año tuvimos a puros nuevos. El único que repetía era Edu y apenas es su segundo año en la olimpiada en general.
P6. La lista de Germán
Sea n un entero positivo. Germán tiene una lista de n números enteros. Si suma todos sus números, obtiene 6. Si los multiplica, también obtiene 6. Encuentra todos los posibles valores para n.
P5. Dos circunferencias, una perpendicular.
Sea ABC un triángulo acutángulo y ω su circuncírculo. Sea Γ un círculo con centro A de forma que corta al arco AB que no contiene a C de ω en un punto D y al arco AC que no contiene a B de ω en un punto E. Sea K la intersección de BE con CD de tal forma que K esté sobre Γ. Demuestra que AK es perpendicular a BC.
P4. Ceros y Unos en un pizarrón.
- ¿Para qué valores de n te puede quedar un número par?
- ¿Para qué valores de n te puede quedar un número impar?
P3. Desigualdades en un selectivo
Sean a,b,c números reales positivos tales que abc=18. Demuestra que: a2+b2+c2+a2b2+a2c2+b2c2≥1516
P2. Los monos de Daniel
Daniel tiene 1600 plátanos y 100 monos. Él va a repartir sus plátanos entre sus 100 monos (pero no de forma justa, algunos tendrán más plátanos que otros, incluso habrá monos que no reciban ningún plátano). Demuestra que al menos 4 monos tendrán la misma cantidad de plátanos.
P1. Repaso de la cantidad de divisores de un número.
3.- Los delegados de Tamaulipas jugando una modificación de ajedrez
Considera un tablero de ajedrez de 8×8. Orlando y Moisés juegan alternando turnos, comenzando por Orlando. Cada uno en su turno coloca un alfil en alguna casilla del tablero vacía, de tal forma que los alfiles no se ataquen entre sí. Pierde el jugador que coloque un alfil que sea atacado por otro previamente. Si los alfiles son del mismo color (es decir, o tienen puros alfiles blancos o puros alfiles negros), determina quién tiene una estrategia ganadora y descríbela.
Nota: un jugador puede atacarse a sí mismo.
