Publicaciones Recientes
Método "Busca donde hay luz"
Encontrar todas las tripletas de enteros (a,b,c) tales que el producto de dos de ellos más el tercero sea la unidad (o sea el 1).
Ecuaciones funcionales
Resolver las siguientes ecuaciones funcionales.
-
Encontrar $p(x)$ de tal manera que $p(x+1)=p(x)+2x+1$.
-
Encontrar $f(x)$ de tal manera que $f(x+1)=x^2-3x+2$.
-
Lo mismo para $$ f(\frac{x+1}{x})=(\frac{x^2+1}{x^2})+1/x $$
-
$f(x+y)=f(x)+f(y)+f(x)f(y)$.
-
Para $x>0$, $f(xy)=xf(y)+yf(x)$.
-
$f(x+1)+f(x-1)=2x^2-4x$.
Fórmulas de Vieta
Encontrar todas las soluciones del siguiente sistema de tres ecuaciones en tres incógnitas.
IMO 2004, problema 2
Encuentre todos los polinomios $P(x)$ tales que
$$P(a-b)+P(b-c)+P(c-a)=2P(a+b+c)$$
para todo $a, b, c$ reales que satisfacen que $ab+bc+ca=0$.
Soluciones de una cuadrática
Sean $x_1$ y $x_2$ dos soluciones distintas de la ecuación cuadrática:
$Ax^2+Bx+C=0$
Demuestra que $$ (x_1-x_2)^2 = \frac{(B/2)^2 -AC}{A^2} $$
2n-agono
Demostrar que para cada n natural mayor que 1, cualquier 2n-ágono convexo tiene una diagonal que no es paralela a ningún lado.
Cinco Enteros
En cualquier conjunto de cinco enteros siempre hay tres cuya suma es múltiplo de 3.
El Viajero
Un viajero decide tomar un paseo en su propio automóvil, recorriendo un camino "circular" que pasa por $n$ ciudades; es decir, sin importar en la ciudad que inicie, regresará a ésta después de pasar por las otras.
La distancia total del recorrido es de $K$ kilómetros. Por otro lado, cada ciudad (digamos la ciudad $i$, con $i$ entre $1$ y $n$) tiene un máximo de gasolina que puede vender por usuario y con dicha gasolina se puede avanzar alguna cierta cantidad de kilómetros ($K_i$ kilómetros para la ciudad i).
Supongamos que el total de gasolina que se puede obtener en las distintas ciudades es apenas suficiente para realizar todo el recorrido, es decir, $K_1 + K_2 + ... + K_n = K$.
subconjuntos con elemento común
Dado el conjunto {1, 2, 3, 4, 5, 6, 7}, demostrar que no tiene ninguna colección de subconjuntos tal que cada par de ellos tienga un elemento común.
subsucesiones
Una sucesión de n^2+1 números reales distintos es dada. Demostrar que existe una subsucesión de n+1 números que es ya sea estrictamente creciente, o estrictamente decreciente.