Publicaciones Recientes

Problema

Cevianas por el circuncentro

Enviado por jmd el 7 de Diciembre de 2011 - 13:12.

 Dado un triángulo $ABC$, considere los puntos $D, E, F$ en las rectas $BC, AC, AB$, respectivamente. Si las rectas $AD, BE, CF$ pasan todas por el centro $O$ del circuncírculo de $ABC$, cuyo radio es $r$, demostrar que
$$\frac{1}{AD}+\frac{1}{BE}+\frac{1}{CE}=\frac{2}{r}$$

Problema

Un ejercicio en álgebra

Enviado por jmd el 7 de Diciembre de 2011 - 12:10.

 Demostrar que si $x\neq1, y\neq1, x\neq{y}$ y $$ \frac{yz-x^2}{1-x}=\frac{zx-y^2}{1-y}$$
entonces ambas fracciones son iguales a $x + y + z$.

Problema

Vieta y la desigualdad de las medias

Enviado por jmd el 7 de Diciembre de 2011 - 12:01.

 Halle las raíces $r_1, r_2, r_3, r_4$ de la ecuación:
$$4x^4 – ax^3 + bx^2 – cx + 5 = 0$$
Sabiendo que son reales positivos, y que
$$\frac{r_1}{2}+\frac{r_2}{4}+\frac{r_3}{5}+\frac{r_4}{8}=1$$

Problema

Punto en el interior de un equilátero

Enviado por jmd el 7 de Diciembre de 2011 - 11:53.

 Sea $P$ un punto interior al triángulo equilátero $ABC$ tal que:
$$PA = 5, PB = 7, PC = 8$$
Encontrar la longitud del lado del triángulo ABC.

Problema

Vieta y los polinomios simétricos

Enviado por jmd el 7 de Diciembre de 2011 - 11:48.

 Encontrar todas las ternas de enteros $(a, b, c)$ tales que:
$$a + b + c=24$$
$$a^2 + b^2 + c^2=210$$
$$abc=440$$

Entrada de blog

El costo social de la deshonestidad

Enviado por jmd el 6 de Diciembre de 2011 - 12:31.

En el mes de octubre anduve buscando aquí en Cd Victoria un carro usado para comprar. Así que tuve muchas conversaciones con amigos y conocidos sobre el mercado de carros usados. Fui a los tianguis, conocí a varias personas que se dedican a comprar y vender, etc. y no me decidía sobre ninguno de los automóviles que vi y probé. Al final compré un Ford K que vendía una abogada, única dueña, que lo había recibido de su papá como regalo de bodas. (Conversamos con ella y su marido y los interrogamos sobre el auto y sentimos que nos estaban diciendo toda la verdad.)

Problema

IMO 2007 (PROBLEMA 6)

Enviado por cuauhtemoc el 1 de Diciembre de 2011 - 18:14.

Sea un entero positivo.  Se considera

Problema

Divisores primos de polinomios

Enviado por coquitao el 29 de Noviembre de 2011 - 00:48.

Sea $f(X)$ un polinomio de coeficientes enteros y $p$ un número primo. Decimos que $p$ es un divisor primo de $f(X)$ si existe $n \in \mathbb{Z}$ tal que $p | f(n)$.

Demuestre que todo polinomio no constante de coeficientes enteros tiene un número infinito de divisores primos.

Problema

Triangulos de area 1 en una reticula de 4x4!!!

Enviado por cuauhtemoc el 28 de Noviembre de 2011 - 18:55.

La siguiente reticula de 4x4 esta formada por cuadritos de lado igual a 1; se quiere dibujar un triangulo de area 1 de tal forma que sus vertices sean puntos de la reticula ¿cuantas formas hay de hacer esto?

Entrada de blog

Sobre el problema 4 de la XXV OMM

Enviado por jmd el 27 de Noviembre de 2011 - 19:53.

Posiblemente el problema más elemental del concurso nacional correspondiente a la XXV Olimpiada de matemáticas sea el problema 4... si no fuera porque, según las reglas del concurso, la demostración del mínimo es obligada. El problema es el siguiente:

Problema 4 (de la XXVOMM): Encuentra el menor entero positivo tal que, al escribirlo en notación decimal, utiliza exactamente dos dígitos distintos y es divisible entre cada uno de los números del 1 al 9.

 

Solución comentada

Distribuir contenido