Publicaciones Recientes
Diofantina condicionada
Encontrar todos las parejas de enteros positivos $(x, y)$ que sean solución de la ecuación diofantina $20x+9y=2009$, y que además sean cuadrados perfectos consecutivos. Nota: $(x,y)=(100,1)$ y $(x,y)=(1,221)$ son soluciones de la ecuación diofantina pero no cumplen la condición.
Recordatorio: concurso regiones, el viernes 29
Este viernes 29 de mayo se realizará el concurso regiones de la Olimpiada Mexicana de Matemáticas en Tamaulipas. Los seleccionados ciudades deben confirmar la fecha y la hora con su correspondiente sede:
Propiedades del máximo común divisor
Demostrar las siguientes propiedades del máximo común divisor de dos números $a$ y $b.$ Nota: hay dos formas usuales de notación para el máximo común divisor, MCD$(a,b)$ o simplemente $(a,b)$.
Trivial --pero no para el novicio
Demostrar que $n^2-1$ es múltiplo de 8 para cualquier $ n $ impar no negativo.
Diofantina en dos variables
Encontrar todas las parejas $(x,y)$ de enteros que satisfacen la ecuación diofantina $x^3+y^3=4(x^2y+xy^2)+1.$
Lema de Euclides --instancia de uso
Encontrar todas las parejas $(a,b)$ de enteros positivos para los cuales el producto $(a^4+1)(b^2-1)$ es divisible entre 39 pero sus factores $(a^4+1)$ y $(b^2-1)$ no.
P1. OMM 1987. Suma de dos fracciones que dan entero
Consideremos dos fracciones reducidas $\frac{a}{b}$ y $\frac{c}{d}$ con $ b, d>0$ . Si la suma de estas dos fracciones es un número entero entonces $b=d$.
Problema 1, ONMAS 2008
¿Cuántos divisores cuadrados perfectos tiene el número $ 2008^{2008} $ ?
Problema 1, geometrense 2008
En un circunferencia hay $3n$ puntos que la dividen en $3n$ arcos. De estos arcos $ n$ miden 1, $n $ miden 2 y el resto mide 3. Demuestra que existen dos de estos puntos diametralmente opuestos.
Diez cajas de billar y una báscula electrónica.
Tenemos 10 cajas con bolas de billar; cada caja pesa 10kg y contiene 10 bolas de billar (1kg cada una). Pero, una de las cajas salió defectuosa, aunque todas sus bolas pesan lo mismo, la caja completa pesa 9kg. Es decir, en una de las cajas, todas la bolas pesan 900 gramos.