Avanzado
P3 OMM 2002. Residuos cuadráticos (módulo 4)
Sean $n$ un entero positivo. ¿Tiene $n^2$ más divisores positivos de la forma $4k+1$ o de la forma $4k-1$?
Problema 4, IMO 2010
Sea $P$ un punto en el interior del triángulo $ABC$ con circunferencia circunscrita $\Gamma$. Las rectas $AP,BP,CP$ cortan otra vez a $\Gamma$ en los puntos $K,L,M$, respectivamente. La recta tangente a $\Gamma$ en $C$ corta a la recta $AB$ en $S$. Demostrar que si $SC=SP$ entonces $MK=ML$.
Problema 1, IMO 2010
Determine todas las funciones $f : \mathbb{R} \to \mathbb{R}$ tales que $$f(\lfloor x \rfloor y)= f(x) \lfloor f(y) \rfloor$$ para todos los números $x, y \in \mathbb{R}$. ($\lfloor z\rfloor$ denota el mayor entero que es menor o igual que $z$.)
P6 OMM 2001. Cuatro axiomas para colección de monedas
Un coleccionista de monedas raras tiene monedas de denominaciones $1, 2, 3, \ldots, n$ (tiene muchas monedas de cada denominación). Desea poner algunas de sus monedas en las cajas de manera que se cumplan las siguientes condiciones:
P5 OMM 2001. Probar isósceles... ¿cómo se prueba isósceles?
Sea $ABC$ un triángulo tal que $AB< AC$ y el ángulo $BAC$ es el doble del ángulo $BCA$. Sobre el lado $AC$ se toma un punto $D$ tal que $CD = AB$. Por el punto $B$ se traza una recta $l$ paralela a $AC$. La bisectriz exterior del ángulo en $A$ intersecta a $l$ en el punto $M$, y la paralela a $AB$ por $C$ intersecta a $l$ en el punto $N$. Prueba que $MD = DN$.
P4 OMM 2001. Lista de residuos cuadráticos
Dados dos enteros positivos $n$ y $a$, se forma una lista de 2001 números como sigue:
- el primer número es $a$;
- a partir del segundo, cada número es el residuo que se obtiene al dividir al cuadrado del anterior entre $n$.
A los números de la lista se les ponen los signos $+$ y $-$, alternadamente
empezando con $+$. Los números con signo así obtenidos se suman, y a esa suma se le llama suma final para $n$ y $a$.
¿Para qué enteros $n \geq 5$ existe alguna $a$ tal que $2 \leq a \leq n/2$, y la suma final para $n$ y $a$ es positiva?
P6 OMM 2000. Configuración sobre un triángulo obtusángulo
Sea $ABC$ un triángulo en el que $\angle{B} >90$ y en el que un punto $H$ sobre $AC$ tiene la propiedad de que $AH = BH$ y $BH$ es perpendicular a $BC$. Sean $D$ y $E$ los puntos medios de $AB$ y $BC$ respectivamente. Por $H$ se traza una paralela a $AB$ que corta a $DE$ en $F$. Prueba que $\angle BCF = \angle ACD$.
P5 OMM 2000. Operación sobre rectángulos --en tablero nxn
Se tiene un tablero de $n\times n$, pintado como tablero de ajedrez. Está permitido efectuar la siguiente operación en el tablero:
- Escoger un rectángulo en la cuadrícula de tal manera que las longitudes de sus lados sean ambas pares o ambas impares, pero que no sean las dos iguales a 1 al mismo tiempo, e
- invertir los colores de los cuadritos de ese rectángulo.
Encuentra para qué valores de $ n $ es posible lograr que todos los cuadritos queden de un mismo color después de haber efectuado la operación el número de veces que sea necesario. (Nota: Las dimensiones de los rectángulos que se escogen pueden ir cambiando).
P4 OMM 2000. Número de primos hasta el primer compuesto
Para $a$ y $b$ enteros positivos, no divisibles entre $5$, se construye una lista de números como sigue:
- El primer número es 5 y,
- a partir del segundo, cada número se obtiene multiplicando el número que le precede (en la lista) por $a$, y sumándole $b$.
(Por ejemplo, si $a = 2$ y $b = 4$, entonces los primeros tres números de la
lista serán: 5, 14, 32 (pues $14 = 5\cdot2 + 4$ y $32 = 14\cdot2 + 4$.)
¿Cuál es la cantidad máxima de primos que se pueden obtener en la lista antes de obtener el primer número no primo?
P3 OMM 2000. Regla aditiva --de formación de un conjunto
Dado un conjunto $A$ de enteros positivos, construimos el conjunto $A'$ poniendo todos los elementos de $A$ y todos los enteros positivos que se pueden obtener de la siguiente manera:
- Se escogen algunos elementos de $A$, sin repetir, y a cada uno de esos números se le pone el signo $+$ o el signo $-$;
- luego se suman esos números con signo, y el resultado se pone en $A'$.
Por ejemplo, si $A = {2, 8, 13, 20}$, entonces algunos elementos de $A'$ son 8 y 14 (pues 8 es elemento de $A$, y 14 = 20+2-8).