Avanzado

Problemas de nivel nacional.
Problema

P6 OMM 1999. Cubrimiento con fichas de dominó

Enviado por jmd el 13 de Julio de 2010 - 19:23.

Se dice que un polígono es ortogonal si todos sus lados tienen longitudes enteras y cada dos lados consecutivos son perpendiculares. Demuestre que si un polígono ortogonal puede cubrirse con rectángulos de 2×1 (sin que éstos se traslapen) entonces al menos uno de sus lados tiene longitud par.

Problema

P4 OMM 1999. Diez cuadros marcados en tablero de ajedrez

Enviado por jmd el 13 de Julio de 2010 - 19:17.

En una cuadrícula de 8×8 se han escogido arbitrariamente 10 cuadritos y se han marcado sus centros. El lado de cada cuadrito mide 1. Demuestre que existen al menos dos puntos marcados que están separados una distancia menor o igual que 2, o que existe al menos un punto marcado que se encuentra a una distancia 1/2 de una orilla de la cuadrícula.
 

Problema

P3 OMM 1999. Hexágono en triángulo: razón de áreas y concurrencia

Enviado por jmd el 13 de Julio de 2010 - 19:11.

Considere un punto P en el interior del triángulo ABC. Sean D,E y
F los puntos medios de AP,BP y CP respectivamente y L,M y N los
puntos de intersección de BF con CE, AF con CD y AE con BD.

  • Muestre que el área del hexágono DNELFM es igual a una tercera parte del área del triángulo ABC.
  • Muestre que DL,EM y FN concurren.
Problema

P6 OMM 1998. Planos equidistantes a 5 puntos

Enviado por jmd el 11 de Julio de 2010 - 11:31.

Un plano en el espacio es equidistante a un conjunto de puntos si la distancia de cada punto al plano es la misma. ¿Cuál es el mayor número de planos equidistantes a 5 puntos de los cuales no hay 4 en un mismo plano?

Problema

P3 OMM 1998. Octágono rojinegro

Enviado por jmd el 11 de Julio de 2010 - 11:20.

Cada uno de los lados y las diagonales de un octágono regular se pintan de rojo o de negro. Demuestre que hay al menos siete triángulos cuyos vértices son vértices del octágono y sus tres lados son del mismo color.

Problema

P2 OMM 1998. Rayos, ángulo, bisectriz, lugar geométrico...

Enviado por jmd el 11 de Julio de 2010 - 11:18.

Dos rayos l,m parten de un mismo punto formando un ángulo A, y P es un punto en l. Para cada circunferencia C, tangente a l en P, que corte a m en puntos Q y R, T es el punto donde la bisectriz del ángulo QPR corta a C. Describe la figura geométrica que forman los puntos T. Justifica tu respuesta.

Problema

P6 OMM 1997. Un quinto más suma de fracciones

Enviado por jmd el 11 de Julio de 2010 - 10:37.

Pruebe que el número 1 se puede escribir de una infinidad de maneras distintas en la forma 1=15+1a1+1a2++1an

donde n y a1,a2,,an son enteros positivos y 5<a1<a2<<an

 

Problema

P5 OMM 1997. Triángulo formado por cevianas

Enviado por jmd el 11 de Julio de 2010 - 10:32.

Sean P,Q,R puntos sobre los lados de un triángulo ABC con P en el segmento BC, Q en el segmento AC y R en el segmento BA, de tal manera que si A es la intersección de BQ con CR, B es la intersección de AP con CR, y C es la intersección de AP con BQ, entonces AB=BC,BC=CA, y CA=AB. Calcule el cociente del área del triángulo PQR entre el área del triángulo ABC.

Problema

P4 OMM 1997. Planos determinados por seis puntos

Enviado por jmd el 11 de Julio de 2010 - 10:31.

Dados 3 puntos no alineados en el espacio, al único plano que los contiene le llamamos plano determinado por los puntos. ¿Cuál es el mínimo número de planos determinados por 6 puntos en el espacio si no hay 3 alineados y no están los 6 en un mismo plano?

Problema

P3 OMM 1997. Dieciseis vecinos en una cuadrícula

Enviado por jmd el 11 de Julio de 2010 - 10:29.

En una cuadrícula de 4 × 4 se van a colocar los números enteros del 1 al
16 (uno en cada casilla).

  • (a) Pruebe que es posible colocarlos de manera que los números que aparecen en cuadros que comparten un lado tengan una diferencia menor o igual a 4.
  • (b) Pruebe que no es posible colocarlos de tal manera que los números que aparecen en cuadros que comparten un lado tengan diferencia menor o igual a 3.
Distribuir contenido