Avanzado

Problemas de nivel nacional.
Problema

P5 OMM 1992. Desigualdad con suma de radicales

Enviado por jmd el 9 de Julio de 2010 - 11:02.

Sean $x, y, z$ números reales positivos tales que $x + y + z = 3$. Si
$$S = \sqrt{2x + 3} + \sqrt{2y + 3} + \sqrt{2z + 3},$$
pruebe que $6 < S \leq 3\sqrt{5}$

Problema

P6 OMM 1991. Triángulos en un polígono

Enviado por jmd el 9 de Julio de 2010 - 10:23.

En un polígono de $ n $ lados, ($n \geq 4$) se considera una familia $T$ de triángulos, formados con los vértices del polígono, con la propiedad de que cada dos triángulos de la familia cumple alguna de las siguientes dos condiciones:
– No tienen dos vértices en común.
– Tienen dos vértices en común.
Demuestre que $T$ tiene a lo más $ n $ triángulos.
 

Problema

P5 OMM 1991. Suma de cuadrados cuadrado

Enviado por jmd el 9 de Julio de 2010 - 10:21.

La suma de los cuadrados de dos números consecutivos puede ser un cuadrado perfecto (por ejemplo $3^2 + 4^2 = 5^2$).
a) Pruebe que la suma de los cuadrados de $m$ enteros consecutivos no puede
ser un cuadrado para $m$ igual a 3 y 6.
b) Encuentre un ejemplo de 11 números consecutivos cuya suma de cuadrados sea un cuadrado perfecto.

Problema

P4 OMM 1991. Ocho puntos concíclicos

Enviado por jmd el 9 de Julio de 2010 - 10:17.

Considere un cuadrilátero convexo $ABCD$ en el que las diagonales $AC$ y $BD$ se cortan formando ángulo recto. Sean $M, N, R$ y $S$ los puntos medios de los segmentos $AB, BC, CD$ y $AD$, respectivamente. Sean $W,X, Y$ y $Z$ las proyecciones de los puntos $M, N, R$ y $S$ sobre las rectas $DC, AD, AB$ y $BC$, respectivamente. Pruebe que todos los puntos $M, N,R, S, W, X, Y$ y $Z$ están sobre una misma circunferencia.

Problema

P3 OMM 1991. Cuatro canicas en una esfera

Enviado por jmd el 9 de Julio de 2010 - 10:16.

Se tienen 4 canicas de radio uno colocadas en el espacio de tal manera que
cada una de ellas es tangente a las otras tres. ¿Cuál es el radio de la esfera
más pequeña que contiene a las canicas?

Problema

P6. OMM 1990. Una configuración cargada de teoría

Enviado por jmd el 7 de Julio de 2010 - 03:27.

Sea $ABC$ un triángulo rectángulo con ángulo recto en $C$. Sea $l$ cualquier recta que pase por $B$ y que corte al lado $AC$ en un punto $E$. Sean $F$ el punto medio de $EC$, $G$ el punto medio de $CB$ y $H$ el pie de la altura de $C$, respecto a $AB$, en el triángulo $ABC$. Si $I$ denota el circuncentro del triángulo $AEH$ (punto de intersección de las mediatrices de los lados), pruebe que los triángulos $IGF$ y $ABC$ son semejantes.

Problema

P5. OMM 1990. Baricentro de coordenadas enteras

Enviado por jmd el 7 de Julio de 2010 - 03:23.

Si $P_1,P_2,\ldots,P_{19}$ son diecinueve puntos del plano con coordenadas enteras tales que cada tres de ellos son no colineales, demuestre que hay tres con la propiedad de que su baricentro (punto de intersección de las medianas de un triángulo), también tiene coordenadas enteras.

Problema

P2. OMM 1990. Relación de inradios

Enviado por jmd el 7 de Julio de 2010 - 03:15.

Sea $ABC$ un triángulo rectángulo con ángulo recto en $B$, y $H$ el punto de intersección del lado $AC$ y la altura por $B$. Llamemos $r,r_1,r_2$ a los radios de las circunferencias inscritas en los triángulos $ABC,ABH,HBC$, respectivamente. Encuentre una igualdad que relacione $r,r_1,r_2$.

Problema

P5. OMM 1989. Círculos tangentes

Enviado por jmd el 6 de Julio de 2010 - 12:23.

Sean $C_1$ y $C_2$ dos círculos tangentes de radio 1 dentro de un círculo $C$ de radio 2. Sea $C_3$ un círculo dentro de $C$ tangente a cada uno de los círculos $C,C_1,C_2$. Sea $C_4$ un círculo dentro de $C$ tangente a $C,C_1,C_3$. Demuestre que los centros de $C,C_1,C_3,C_4$ son los vértices de un rectángulo.

Problema

P6. OMM 1988. Lugar geométrico del incentro

Enviado por jmd el 5 de Julio de 2010 - 20:13.

Considere dos puntos fijos $B$ y $C$ de una circunferencia $W$. Encuentre el lugar geométrico de las intersecciones de las bisectrices de los triángulos $ABC$, cuando $A$ es un punto que recorre $W$.

Distribuir contenido