Avanzado
IX Olimpiada Norestense de Matemáticas (Problema 3)
El incírculo del triángulo △ABC es tangente al lado AB en el punto P y al lado BC en el punto Q. El círculo que pasa por los puntos A,P,Q corta por segunda vez a la recta BC en M y el círculo que pasa por los puntos C,P,Q corta por segunda vez a la recta AB en el punto N.
XXIV Olimpiada Iberoamericana de Matemáticas (problema 6)
Alrededor de una circunferencia se marcan 6000 puntos y cada uno se colorea con uno de 10 colores dados, de manera tal que entre cualesquiera 100 puntos consecutivos siempre figuran los 10 colores. Hallar el menor valor k con la siguiente propiedad: Para toda coloración de este tipo existen k puntos consecutivos entre los cuales figuran los 10 colores.
XXIV Olimpiada Iberoamericana de Matemáticas (problema 5)
La sucesión an está definida por
a1=1,a2k=1+ak y a2k+1=1a2k, para todo entero k≥1.
Demostrar que todo número racional positivo aparece exactamente una vez en esa sucesión.
XXIV Olimpiada Iberoamericana de Matemáticas (problema 4)
Sea ABC un triángulo con AB≠AC. Sean I el incentro de ABC y P el otro punto de intersección de la bisectriz exterior del ángulo A con el circuncírculo de ABC. La recta PI intersecta por segunda vez al circuncírculo de ABC en el punto J. Demostrar que los circuncírculos de los triángulos JIB y JIC son tangentes a IC y a IB, respectivamente.
XXIV Olimpiada Iberoamericana de Matemáticas (problema 3)
Sean C1 y C2 dos circunferencias de centros O1 y O2, con el mismo radio, que se cortan en A y en B. Sea P un punto sobre el arco AB de C2 que está dentro de C1. La recta AP corta a C1 en C, la recta CB corta a C2 en D y la bisectriz del ∠CAD intersecta a C1 en E y a C2 en L. Sea F el punto simétrico a D con respecto al punto medio de PE. Demostrar que existe un punto X que satisface ∠XFL=∠XDC=30∘ y CX=O1O2.
XXIV Olimpiada Iberoamericana de Matemáticas (problema 2)
Para cada entero positivo n se define an=n+m, donde m es el mayor entero tal que 22m≤n2n. Determinar qué enteros positivos no aparecen en la sucesión an.
XXIV Olimpiada Iberoamericana de Matemáticas (problema 1)
Sea n un natural mayor que 2. Supongamos que n islas están ubicadas en un círculo y que entre cada dos islas vecinas hay dos puentes como en la figura:

Olimpiada Iberoamericana (el 4 de 2004)
Determinar todas las parejas (a,b), donde a,b son enteros positivos de dos dígitos cada uno, tales que 100a+b y 201a+b son cuadrados perfectos de cuatro dígitos.
Olimpiada Iberoamericana (el 5 de 1985)
A cada número natural n se le asigna un entero no negativo f(n) de tal manera que se satisfacen las siguientes condiciones:
- (i) f(rs)=f(r)+f(s)
- (ii) f(n)=0, si el dígito de las unidades de n es 3
- (iii) f(10)=0
Hallar f(1985)
Olimpiada Iberoamericana (el 4 de 1987)
Se define la sucesión pn de la siguiente manera: p1=2 y, para n≥2, pn es el mayor divisor primo de p1p2…pn−1+1. Demostrar que pn es diferente de 5.
