Avanzado
Cuadrilátero completo y puntos medios de sus diagonales
Consideremos $a$, $b$, $c$ y $d$ cuatro rectas no tres de ellas concurrentes (es decir, un cuadrilátero completo) y no dos de ellas paralelas. Demuestra que son colineales los puntos medios de las tres diagonales del cuadrilátero completo.
Nota: Las diagonales de un cuadrilátero completo son los segmentos que unen un punto de intersección de dos de sus lados con el de los otros dos lados.
Ciclos de residuos en una progresión geométrica
Sean $a$ y $g$ enteros positivos coprimos con un módulo $m$ (otro entero positivo), y consideremos los residuos que dejan (en la división entre $m$) los términos de la progresión aritmética $a,ag,ag^2,\ldots$. Demostrar que en esa sucesión de residuos éstos recurren (se repiten por bloques o ciclos), y que si $t$ es el número de términos del período o bloque recurrente, entonces $t\leq \phi(m)$
Solución de congruencias potenciales
Sea $a$ un entero positivo, coprimo con un primo $p$. Analizar la ecuación de congruencias $x^n \equiv a \pmod{p}$ en cuanto a sus posibles soluciones.
Raíces primitivas de un primo: una propiedad logarítmica
Sean $p$ un número primo y $g$ una de sus raíces primitivas. Demostrar que dos enteros positivos $i,j$ son equiresiduales en la división entre $p-1$ si y sólo si $g^i,g^j$ son equiresiduales en la división entre $p$
Vieta en descenso infinito
Considere el cociente $k$ que resulta de dividir $x^2+y^2+1$ entre $xy$, con $x,y$ enteros positivos y la división tiene residuo cero. Determine todos los valores enteros posibles de $k$.
Ejercicio 3.3.9
Sean $\pi_1, \pi_2, \pi_3, \pi_4, \pi_5, \pi_6$ tres planos en un espacio proyectivo tridimensional de tal manera que cada uno de los siguientes conjuntos de tres planos tienen una línea común de intersección:
\[\{\pi_1, \pi_2, \pi_3\}, \{\pi_1, \pi_4, \pi_5\}, \{\pi_3, \pi_5, \pi_6\}, \{\pi_2, \pi_4, \pi_6\}\]
Más aun, no cuatro de éstos planos tienen una línea común.
Prueba que los seis planos tienen un punto en común.
Ejercicio 3.3.12
Demuestra lo siguiente sobre planos afines:
Ejercicio 3.3.6
Supon que el teorema de Desargues es válido en un cierto plano proyectivo $\mathcal{P}$. Prueba que su converso también será válido sin utilizar el Principio de Dualidad.
Ejercicio 3.3.1
Considera la tripleta $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ con $\mathcal{P}=\{1,2,3, 4\}$, $\mathcal{L} = \{a, b, c, d, e, f\}$ y $\mathcal{I} = \{(1,a), (2,a), (3,b), (4,b), (1,c), (3,c), (2,d), (4,d), (1,e),(4,e),(2,f),(3,f)\}$.
- Dibuja un diagrama de esta tripleta.
- Verifica que esta tripleta satisface únicamente dos de los axiomas de plano proyectivo.
Ejercicio 3.2
Sea $\pi$ un plano proyectivo. Usa la definición 3.11(la definición de espacio proyectivo pero simplificada) para probar que:
P3'. Existe almenos tres líneas no concurrentes en $\pi$.
P4'. Exiten almenos tres líneas que pasan por cualquier punto en $\pi$.
Deduce que el principio de dualidad es válido en un plano proyectivo.