Intermedio

Problemas de nivel estatal y similares.
Problema

Encontrar k...

Enviado por Luis Brandon el 18 de Agosto de 2009 - 12:08.

Determina si existen infinitos enteros $ k $, que cumplen que para cualquier primo $ p $, el numero $p^2+k$ siempre es compuesto.

Por ejemplo si tomamos $k=2$, para $p=2$ dicho numero es compuesto pero para $p=3$ no lo es...

Problema

Criba modular

Enviado por jmd el 16 de Agosto de 2009 - 07:29.

Encontrar todas las soluciones $(x,y)$  en enteros positivos para la ecuación $7^x-3\cdot 2^y=1.$
 

Problema

Múltiplo de 11 compuesto de unos

Enviado por jmd el 15 de Agosto de 2009 - 06:02.

Sea $p$ un un entero positivo. El número $11p$ está compuesto de $m$ dígitos todos iguales a 1. Encontrar todos los valores de $m$ para los cuales $p$ es primo.

Problema

Partir la baraja

Enviado por jmd el 15 de Agosto de 2009 - 05:51.

Sea $ n $ un entero positivo. Una baraja de $2n$ cartas contiene exactamente dos cartas marcadas con cada uno de los enteros $1,2,\ldots,n.$  Las cartas se ordenan en la forma $1,1,2,2,3,3,...,n,n.$  La baraja ya ordenada de esta manera se parte, y resulta que, en las dos partes, los dígitos en las cartas suman la misma cantidad.

Problema

Segmentos iguales y colinealidad

Enviado por Fernando Mtz. G. el 9 de Agosto de 2009 - 14:01.

Sea ABC un triangulo, M el punto medio de CA, P el punto donde la bisectriz desde C intersecta a AB; E y Q son los puntos donde una ceviana desde A intersecta a la bisectriz y al lado BC, respectivamnete (Q no esta en la prolongacion de BC). Demuestra que los segmentos PQ y CQ son iguales, si y solo si B, E y M son colineales.

Problema

Los cuadernos del Chico Fresa

Enviado por jmd el 7 de Agosto de 2009 - 14:26.

El Chico Fresa recién regresó de Italia y les trajo cuadernos a sus cuates. ¿De cuántas formas puede distribuir los 15 Moleskine entre 4 de sus amigos, bajo la condición de que a Baldo le toquen al menos 3, a Carlos al menos 2 y a Daniel al menos 1? (Nota: a Eulogio le puede tocar cualquier número --lo siento el chico fresa tiene sus preferidos.)

Problema

Cuadrilátero cícliclo dentro de un cuadrilátero circunscrito

Enviado por jesus el 2 de Agosto de 2009 - 21:08.

Sea ABCD un cuadrilátero para el cuál existen cuatro puntos P, Q, R y S sobre los lados AB, BC, CD y DA respectivamente y tales que PB=BQ, QC = CR, RD = DS y  SA = AP. Demuestra que:

Problema

P1. OMM 1988. Siete pelotas blancas y cinco negras

Enviado por jmd el 1 de Agosto de 2009 - 18:27.

¿De cuántas formas se pueden acomodar en línea recta siete pelotas blancas y cinco negras, de tal manera que no estén dos pelotas negras juntas?

Problema

IMO4_2009_invertido

Enviado por jmd el 30 de Julio de 2009 - 10:12.

Sean ABC un triángulo isósceles rectángulo en A, J su incentro y AD, BE las bisectrices de los ángulos A y B, respectivamente. La altura AD es tangente al incírculo del triángulo ADC (con incentro en I) en P y al lado CA en Q. Demostrar que:

Problema

Cambio de dígitos

Enviado por Fernando Mtz. G. el 26 de Julio de 2009 - 22:18.

Sean $a$ y $b$ enteros positivos de 8 dígitos cada uno, tales que al quitar cualquier dígito de $a$ (pero solo uno) y colocar el correspondiente en posición con $b$, se cumple que el número formado es divisible entre 7 (en cualquiera de los 8 posibles cambios). Demuestra que $b$ es divisible entre 7.
   

Distribuir contenido