Intermedio
Olimpiada Iberoamericana (el 1 de 1999)
Halla todos los enteros positivos que son menores que 1000 y cumplen con la siguiente condición: el cubo de la suma de sus dígitos es igual al cuadrado de dicho entero.
¿Trazo auxiliar? OK Pero... ¿cómo lo descubres?
En un triángulo isósceles AOB, rectángulo en O, se eligen los puntos P,Q,S en los lados OB,OA,AB, respectivamente, y un punto R interior al triángulo, de tal manera que el cuadrilátero PQRS sea un cuadrado. Si la razón de áreas entre el cuadrado y el triángulo es 2/5, calcular la razón OP/OQ.
Un corolario del PTF
Si $p$ es un primo impar y $a$ es primo con $p$, entonces $a^{\frac{p-1}{2}} \equiv \pm 1 \pmod{p}$. (Por ejemplo, todo cuadrado perfecto primo con 5 termina en 1 o en 9 o en 4 o en 6.)
La clave está en los residuos
Encontrar todas las parejas $(x,y)$ de dígitos, tales que el número $2x1y9$ sea múltiplo de 101.
Elemental pero difícil
Encontrar todos los números enteros positivos de cuatro cifras de la forma $n=abab$ (la primera y la tercera cifras son iguales, así como la segunda y la cuarta) y tales que el producto de sus cifras divide a $n^2$.
Inferencias de paridad
Sea $n\geq2$ un entero. Los números $x_1,x_2,\ldots,x_n$ son elementos del conjunto $\{-1,1\}$ y cumplen la ecuación $x_1x_2+x_2x_3+\ldots+x_nx_1=0$. Demostrar que $ n $ es múltiplo de 4.
Adictos al Xbox
Los adolescentes de una preselección olímpica de matemáticas tienen una actividad de entretenimiento favorita: 17 son adictos al Xbox (conjunto A1), 13 a las series americanas de TV (A2), 8 a la resolución de problemas de concurso (A3), y 6 no tienen actividad recreativa conocida.
Elemental,... pero sólo si sabes usar el PTF
Encontrar todos los primos $q$ tales que $4+2^q$ es múltiplo de $2q.$
Otro de puros 1´s
Demostrar que todo primo impar n excepto el 5 divide a algun numero de la forma $111...11$ ($k$ digitos, todos unos).
P divide a una sumota
Sea $p$ un número primo. Encontrar la condición que debe cumplir n para que $1+n+n^2+....+n^{p-2}$ es múltiplo de $p$.