Intermedio

Problemas de nivel estatal y similares.
Problema

Olimpiada Iberoamericana (el 1 de 1999)

Enviado por jmd el 20 de Septiembre de 2009 - 05:31.

Halla todos los enteros positivos que son menores que 1000 y cumplen con la siguiente condición: el cubo de la suma de sus dígitos es igual al cuadrado de dicho entero.

Problema

¿Trazo auxiliar? OK Pero... ¿cómo lo descubres?

Enviado por jmd el 13 de Septiembre de 2009 - 08:22.

En un triángulo isósceles AOB, rectángulo en O, se eligen los puntos P,Q,S en los lados OB,OA,AB, respectivamente, y un punto R interior al triángulo, de tal manera que el cuadrilátero PQRS sea un cuadrado. Si la razón de áreas entre el cuadrado y el triángulo es 2/5, calcular la razón OP/OQ.

Problema

Un corolario del PTF

Enviado por jmd el 7 de Septiembre de 2009 - 07:51.

Si $p$ es un primo impar y $a$ es primo con $p$, entonces $a^{\frac{p-1}{2}} \equiv \pm 1 \pmod{p}$. (Por ejemplo, todo cuadrado perfecto primo con 5 termina en 1 o en 9 o en 4 o en 6.)
 

Problema

La clave está en los residuos

Enviado por jmd el 6 de Septiembre de 2009 - 07:24.

Encontrar todas las parejas $(x,y)$ de dígitos, tales que el número $2x1y9$ sea múltiplo de 101.

Problema

Elemental pero difícil

Enviado por jmd el 2 de Septiembre de 2009 - 19:50.

Encontrar todos los números enteros positivos de cuatro cifras de la forma $n=abab$ (la primera y la tercera cifras son iguales, así como la segunda y la cuarta) y tales que el producto de sus cifras divide a $n^2$.

Problema

Inferencias de paridad

Enviado por jmd el 28 de Agosto de 2009 - 19:14.

Sea $n\geq2$ un entero. Los números $x_1,x_2,\ldots,x_n$ son elementos del conjunto $\{-1,1\}$ y cumplen la ecuación $x_1x_2+x_2x_3+\ldots+x_nx_1=0$. Demostrar que $ n $ es múltiplo de 4.

Problema

Adictos al Xbox

Enviado por jmd el 28 de Agosto de 2009 - 19:06.

Los adolescentes de una preselección olímpica de matemáticas tienen una actividad de entretenimiento favorita: 17 son adictos al Xbox (conjunto A1), 13 a las series americanas de TV (A2), 8 a la resolución de problemas de concurso (A3), y 6 no tienen actividad recreativa conocida.

Problema

Elemental,... pero sólo si sabes usar el PTF

Enviado por jmd el 24 de Agosto de 2009 - 06:19.

 Encontrar todos los primos $q$ tales que $4+2^q$ es múltiplo de $2q.$

Problema

Otro de puros 1´s

Enviado por arbiter-117 el 18 de Agosto de 2009 - 18:40.

 Demostrar que todo primo impar n excepto el 5 divide a algun numero de la forma $111...11$ ($k$ digitos, todos unos).

Problema

P divide a una sumota

Enviado por arbiter-117 el 18 de Agosto de 2009 - 18:33.

Sea $p$ un número primo. Encontrar la condición que debe cumplir n para que $1+n+n^2+....+n^{p-2}$ es múltiplo de $p$.

 

 

 

Distribuir contenido