Intermedio

Problemas de nivel estatal y similares.
Problema

El profesor Distraído

Enviado por jmd el 10 de Marzo de 2010 - 10:40.

El profesor Distraído ha llevado un registro de su conducta distraída: tres de cada diez días olvida poner el despertador; también ha registrado que en 2 de cada 10 días en que olvida ponerlo, de cualquier manera llega a tiempo a impartir su clase de probabilidad; finalmente en uno de cada 10 días en que lo pone, de cualquier manera no se levanta a tiempo y llega tarde a impartir su cátedra.

a) Consideremos el experimento aleatorio de elegir un día en la vida del profesor Distraído. Identifica y nombra los eventos relevantes en el enunciado.
b) Escribe los datos en términos de probabilidades de esos eventos.

Problema

Sistema simétrico y Vieta

Enviado por jmd el 8 de Marzo de 2010 - 20:45.

Resolver el sistema de ecuaciones $x^2+y^2+x+y=6, ~xy+x+y=-1$. (Es decir, encontrar los valores de $x,y$ que cumplen ambas ecuaciones.)

Problema

Magia con matemáticas

Enviado por DragonforceX el 1 de Marzo de 2010 - 15:35.

Sea $ K $ un entero positivo de $ n $ cifras y $ S $ la suma de todas las cifras de $ K $. Demuestra que $ K $ menos $ S $ es múltiplo de 9 para todo $ n $, con $ n $ mayor o igual a 2.

Problema

Más con menos (rendimientos decrecientes del trabajo en equipo)

Enviado por jmd el 13 de Febrero de 2010 - 19:56.

En un equipo de trabajo de 20 desarrolladores de software educativo, la producción es de 30 unidades didácticas al año por cada integrante. Un estudio ha estimado que el rendimiento de cada miembro disminuiría en 1 unidad cada vez que se añadiera un nuevo miembro al equipo.

Problema

Un acertijo de Lewis Carroll

Enviado por jmd el 17 de Enero de 2010 - 20:46.

Varios escuelantes se sientan formando un círculo de manera que cada uno tiene dos vecinos,  y quedan en un orden tal que el primero tiene un dollar más que el segundo y éste tiene un dollar más que el tercero, etc.

Problema

Un acertijo algebraico

Enviado por jmd el 8 de Enero de 2010 - 19:15.

La suma de tres números $a,b,c $ es 3, la suma de sus cuadrados es 11 y la suma de sus cubos es 27. Encontrar la suma de sus potencias cuartas.

Problema

Sin polinomios simétricos inútil es intentarlo

Enviado por jmd el 2 de Enero de 2010 - 12:34.

Demostrar que para $a,b,c$ reales no nulos tales que $a+b+c=0$ se cumple la identidad

$$\frac{a^3+b^3+c^3}{3}\cdot \frac{a^7+b^7+c^7}{7} = \Big( \frac{a^5+b^5+c^5}{5} \Big) ^2=$$

Problema

Polinomios simétricos: instancia de uso

Enviado por jmd el 1 de Enero de 2010 - 13:43.

Sean $a,b,c$ números reales distintos de cero y tales que $a+b+c=0$ y $a^3+b^3+c^3=a^5+b^5+c^5$. Demostrar que $a^2+b^2+c^2=\frac{6}{5}$

Problema

Identidad de Gauss

Enviado por jmd el 1 de Enero de 2010 - 12:44.

a) Demostrar la identidad algebraica $a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$

b) Demostrar la identidad $a^2+b^2+c^2-ab-bc-ca=\frac{1}{2}[(a-b)^2+(b-c)^2+(c-a)^2]$

c) Usar el resultados del inciso anterior para demostrar que si $a,b,c$ son reales positivos entonces se cumple la desigualdad  $a^2+b^2+c^2-ab-bc-ca\geq 0$

Problema

Polinomios simétricos en tres variables: resultado fundamental

Enviado por jmd el 1 de Enero de 2010 - 10:47.

Sea $ n $ un entero no negativo y $x,y,z$ números reales.  Con la notación usual, defínanse los polinomios simétricos elementales en tres variables como $\sigma_1=x+y+z,~\sigma_2=xy+yz+zx, ~\sigma_3=xyz$  y $S_n=x^n+y^n+z^n$.

Demostrar:

a) $S_n=\sigma_1\cdot S_{n-1}-\sigma_2\cdot S_{n-2}+\sigma_3\cdot S_{n-3}$, para $n\geq3$

Distribuir contenido