Problemas - Álgebra

Problema

P5 OMM 1991. Suma de cuadrados cuadrado

Enviado por jmd el 9 de Julio de 2010 - 09:21.

La suma de los cuadrados de dos números consecutivos puede ser un cuadrado perfecto (por ejemplo $3^2 + 4^2 = 5^2$).
a) Pruebe que la suma de los cuadrados de $m$ enteros consecutivos no puede
ser un cuadrado para $m$ igual a 3 y 6.
b) Encuentre un ejemplo de 11 números consecutivos cuya suma de cuadrados sea un cuadrado perfecto.

Problema

P1 OMM 1991. Fracciones con denominador 1991

Enviado por jmd el 9 de Julio de 2010 - 09:02.

Calcule la suma de todas las fracciones positivas irreducibles (simplificadas)
menores que uno y con denominador es 1991.

Problema

P4. OMM 1990. Fichas de dominó

Enviado por jmd el 7 de Julio de 2010 - 02:20.

Considere las veintisiete fichas de dominó que quedan quitando la blanca-blanca. Tomando en cuenta los puntos que hay en una ficha, a cada ficha le corresponde un número racional menor o igual que uno. ¿Cuál es la suma de todos estos números?

Problema

P3. OMM 1990. ¿Inducción? OK ¿Pero te queda claro qué debes demostrar?

Enviado por jmd el 7 de Julio de 2010 - 02:17.

Pruebe que $n^{n-1}-1$ es divisible entre $(n-1)^2$ para todo entero $n\geq2$

Problema

P4. OMM 1989. Números en expansión decimal

Enviado por jmd el 6 de Julio de 2010 - 11:18.

Encuentre el entero positivo mas pequeño $ n $ tal que, si su expansión decimal es $ n=a_ma_{m-1}\ldots{a_2}a_1a_0 $ y $r$ es el número cuya expansión decimal es $r=a_1a_0a_ma_{m-1}\ldots{a_2}0$, entonces $r$ es el doble de $n$.
 

Problema

P3. OMM 1989. Número de 1989 cifras

Enviado por jmd el 6 de Julio de 2010 - 11:16.

Pruebe que no existe un número positivo de 1989 cifras que tenga al menos tres de ellas iguales a 5 y tal que la suma de todas las cifras sea igual al producto de las mismas.

Problema

P7. OMM 1988. Subconjuntos ajenos de {1,2,...,m}

Enviado por jmd el 5 de Julio de 2010 - 19:18.

Si $A$ y $B$ son subconjuntos ajenos del conjunto $\{1,2,\ldots,m\}$ y la suma de los elementos de $A$ es igual a la suma de los elementos de $B$, pruebe que el número de elementos de $A$ y también de $B$ es menor que $m/\sqrt{2}$
 

Problema

Raíces cúbicas de números racionales

Enviado por jmd el 25 de Junio de 2010 - 11:32.

Sean $p,q,r$ números racionales no nulos tales que

$$\sqrt[3]{pq^2}+\sqrt[3]{qr^2}+\sqrt[3]{rp^2}$$
es un número racional no nulo. Demostrar que
$$\frac{1}{\sqrt[3]{pq^2}}+\frac{1}{\sqrt[3]{qr^2}}+\frac{1}{\sqrt[3]{rp^2}}$$ es también un número racional.

Problema

Suma de dígitos

Enviado por jmd el 25 de Junio de 2010 - 11:15.

Si $S(n)$ denota la suma de los dígitos de un número natural n, encontrar todas las soluciones de $n(S(n)-1)=2010$ y demostrar que son las únicas.

Problema

Posible cambio de variables en desigualdades (2)

Enviado por jmd el 25 de Junio de 2010 - 06:42.

Sean $x,y,z$ números reales positivos. Demostrar que si $xy+yz+zx+2xyz=1$, entonces existen números $a,b,c$ reales positivos tales que
$$x=\frac{a}{b+c},y=\frac{b}{c+a},z=\frac{c}{a+b}$$